Warianty tytułu
Języki publikacji
Abstrakty
Pruning and fertilization practices plays an important role in coffee plantation, used to maintain soil quality and coffee productivity. However, the impact of pruning and fertilization practices on soil microbial activity under coffee-based agroforestry are poorly understood. The aimed of this study was to analyze the response of soil microbial properties (i.e., soil microbial biomass C (SMBC) and soil respiration rates (SR)) to pruning and fertilization management in coffee-based agroforestry in UB (Universitas Brawijaya) Forest. A split-plot design with eight treatments and three replications were used in this experiment. The main-plot factor consisted of two types of pruning (Pruning and Bending), and the sub-plot factor consisted of four types of fertilization (i.e., no fertilizer (NF), 100% chicken manure (MN), 50% chicken manure + 50% NPK-inorganic (MN+NPK), and 100% NPK-inorganic (NPK)). The result showed that there was a significantly different (p<0.05) in the soil microbial biomass C and soil respiration after the application of fertilizer. The addition of chicken manure (MN and MN+NPK treatment) could enhance the soil microbial biomass and soil respiration, compared to the NF treatment under different pruning practices. The level of soil pH in MN were highest and significantly different with NPK treatment, showed that the application of chicken manure had a potential to neutralize the soil acidity. Metabolic quotient (qCO2) showed highest in the NF treatment as compared to the other treatments. The soil respiration had positive correlation (p<0.05) with SMBC, while SMBC had negative correlation (p<0.01) with qCO2.
Czasopismo
Rocznik
Tom
Strony
329--342
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
- Postgraduate Program, Faculty of Agriculture, Universitas Brawijaya, Jl. Veteran No.1, Malang 65145, East Java, Indonesia
autor
- Department of Soil Science, Faculty of Agriculture, Universitas Brawijaya, Jl. Veteran No.1, Malang 65145, East Java, Indonesia, c.prayogo@ub.ac.id
autor
- Department of Soil Science, Faculty of Agriculture, Universitas Brawijaya, Jl. Veteran No.1, Malang 65145, East Java, Indonesia
autor
- UK Centre for Ecology and Hydrology, Library Avenue, Bailrigg, Lancaster, LA1 4AP, United Kingdom
Bibliografia
- 1. Abbasi Surki, A., Nazari, M., Fallah, S., and Iranipour, R. 2021. Improvement of the soil properties, nutrients, and carbon stocks in different cereal–legume agroforestry systems. International Journal of Environmental Science and Technology, 18, 123–130. https://doi.org/10.1007/s13762-020-02823-9.
- 2. Abdalla, K., Sun, Y., Zarebanadkouki, M., Gaiser, T., Seidel S., and Pausch J. 2022. Long-term continuous farmyard manure application increases soil carbon when combined with mineral fertilizers due to lower priming effects. Geoderma, 116216. https://doi.org/10.1016/j.geoderma.2022.116216.
- 3. Ayala-Montejo, D., Valdés-Velarde, E., Benedicto-Valdés, G.S., Escamilla-Prado, E., Sánchez-Hernández, R, Gallardo, J.F., and Martínez-Zurimendi, P. 2022. Soil biological activity, carbon and nitrogen dynamics in modified coffee agroforestry systems in Mexico. Agronomy, 12(8), 1–14. https://doi.org/10.3390/agronomy12081794.
- 4. Badan Meteorologi, Klimatologi, dan Geofisika. Kab. Malang, Indonesia. 2021. www.bmkg.go.id. (in Indonesian).
- 5. Bae, K., Lee, D.K., Fahey, T.J., Woo, S.Y., Quaye, A.K., and Lee, Y.K.. 2013. Seasonal variation of soil respiration rates in a secondary forest and agroforestry systems. Agroforestry Systems, 87(1), 131–139. https://doi.org/10.1007/s10457-012-9530-8.
- 6. Bastida, F., Eldridge, D.J., García, C., Kenny, Png.G., Bardgett, R.D., and Delgado-Baquerizo M. 2021. Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. ISME Journal, 15(7), 2081–2091. https://doi.org/10.1038/s41396-021-00906-0.
- 7. Chandra, P., Gill, S.C., Prajapat, K., Barman, A., Chhokar, R.S., Tripathi, S.C., Singh, G., Kumar, R., Rai, A.K., Khobra, R., Jasrotia, P., and Singh, G.P. 2022. Response of wheat cultivars to organic and inorganic nutrition: Effect on the yield and soil biological properties. Sustainability, 14(15). https://doi.org/10.3390/su14159578.
- 8. Charbonnier, F., Roupsard, O., le Maire, G., Guillemot, J., Casanoves, F., Lacointe, A., Vaast, P., Allinne, C., Audebert L, Cambou A, Clément-Vidal A, Defrenet E, Duursma, R.A., Jarri, L., Jourdan, C., Khac, E., Leandro, P., Medlyn, B.E., Saint-André, L., … and Dreyer, E.. 2017. Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system. Plant Cell and Environment, 40(8), 1592–1608. https://doi.org/10.1111/pce.12964.
- 9. Chen, G., Yuan, J., Chen, H., Zhao, X., Wang, S., Zhu, Y., and Wang, Y. 2022. Animal manures promoted soil phosphorus transformation via affecting soil microbial community in paddy soil. Science of the Total Environment, 831. https://doi.org/10.1016/j.scitotenv.2022.154917.
- 10. Ditjenbun. 2021. Statistical of national leading estate crops commodity 2019-2021. Directorat General of Estate Crops. Ministry of Agriculture, Indonesia. (in Indonesian).
- 11. Fahad, S., Chavan, S.B., Chichaghare, A.R., Uthappa, A.R., Kumar, M., Kakade, V., Pradhan, A., Jinger, D., Rawale, G., Yadav, D.K., Kumar, V., Farooq, T.H., Ali, B., Sawant, A.V., Saud, S., Chen, S., and Poczai, P. 2022. Agroforestry systems for soil health improvement and maintenance. Sustainability, 14(22). https://doi.org/10.3390/su142214877.
- 12. Froment, A. 1972. Soil respiration in a mixed oak forest. Oikos, 23(2), 273-277. https://doi.org/10.2307/3543417.
- 13. Fu, X., Id, J.W., Xie, M., Zhao, F., and Id, R.D. 2020. Increasing temperature can modify the effect of straw mulching on soil C fractions, soil respiration, and microbial community composition. PLoS ONE, 15(8). https://doi.org/10.1371/journal.pone.0237245.
- 14. Giuditta, E., Marzaioli, R., Esposito, A., Ascoli, D., Stinca, A., Mazzoleni, S., and Rutigliano, F.A. 2019. Soil microbial diversity, biomass, and activity in two pine plantations of southern Italy treated with prescribed burning. Forests, 11(1). https://doi.org/10.3390/f11010019.
- 15. Gokavi, N., Mote, K., Jayakumar, M., Raghuramulu, Y., and Surendran, U. 2021. The effect of modified pruning and planting systems on growth, yield, labour use efficiency and economics of Arabica coffee. Scientia Horticulturae, 276. https://doi.org/10.1016/j.scienta.2020.109764.
- 16. Guillaume, T., Maranguit, D., Murtilaksono, K., and Kuzyakov, Y. 2016. Sensitivity and resistance of soil fertility indicators to land-use changes: New concept and examples from conversion of Indonesian rainforest to plantations. Ecological Indicators, 67, 49–57. https://doi.org/10.1016/j.ecolind.2016.02.039.
- 17. He, W., Ye, W., Sun, M., Li, Y., Chen, M., Wei, M., Hu, G., Yang, Q., Pan, H., Lou, Y., Wang, H., and Zhuge, Y. 2022. Soil phosphorus availability and stoichiometry determine microbial activity and functional diversity of fluvo-aquic soils under longterm fertilization regimes. Journal of Soils and Sediments, 22(4), 1214–1227. https://doi.org/10.1007/s11368-021-03120-9.
- 18. Huang, K., Li, Y., Hu, J., Tang, C., Zhang, S., Fu, S., Jiang, P., Ge, T., Luo, Y., Song, X., Li, Y., and Cai, Y. 2021. Rates of soil respiration components in response to inorganic and organic fertilizers in an intensively-managed Moso bamboo forest. Geoderma, 403. https://doi.org/10.1016/j.geoderma.2021.115212.
- 19. Kabiri, V., Raiesi, F., and Ghazavi, M.A. 2016. Tillage effects on soil microbial biomass, SOM mineralization and enzyme activity in a semi-arid Calcixerepts. Agriculture, Ecosystems and Environment, 232, 73–84. https://doi.org/10.1016/j.agee.2016.07.022.
- 20. Karim, A., Hifnalisa, H, and Manfarizah, M. 2021. Analysis of arabica coffee productivity due to shading, pruning, and coffee pulp-husk organic fertilizers treatments. Coffee Science, 16. https://doi.org/10.25186/.v16i.1903.
- 21. Khosa, S.A., Khan, K.S., Akmal, M., and Qureshi, K.M. 2020. Effect of combined application of organic and inorganic phosphatic fertilizers on dynamic of microbial biomass in semi-arid soil. Soil Science Annual, 71(1), 47–54. https://doi.org/10.37501/soilsa/121491.
- 22. Kurniawan, S., Hariyanto, P., and Ishaq, R.M. 2021. Soil management practices in coffee-based agroforestry systems within Universitas Brawijaya Forest impact on maintaining soil carbon stock. IOP Conference Series: Earth and Environmental Science, 824. https://doi.org/10.1088/1755-1315/824/1/012010.
- 23. Kurniawan, S., Utami, S.R., Mukharomah, M., Navarette, I.A., and Prasetya, B. 2019. Land use systems, soil texture, control carbon and nitrogen storages in the forest soil of UB Forest, Indonesia. Agrivita, 41(3), 416–427. https://doi.org/10.17503/agrivita.v41i3.2236.
- 24. Li, X.A., Ge, T.D., Chen, Z., Wang, S.M., Ou, X.K., Wu, Y., Chen, H., and Wu, J. P. 2020. Enhancement of soil carbon and nitrogen stocks by abiotic and microbial pathways in three rubber-based agroforestry systems in Southwest China. Land Degradation and Development, 31(16), 2507–2515. https://doi.org/10.1002/ldr.3625.
- 25. Li, Y., Chang, S.X., Tian, L., and Zhang, Q. 2018. Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: A global meta-analysis. Soil Biology and Biochemistry, 121, 50–58. https://doi.org/10.1016/j.soilbio.2018.02.024.
- 26. Lian, J., Wang, H., Deng, Y., Xu, M., Liu, S., Zhou, B., Jangid, K., and Duan, Y. 2022. Impact of longterm application of manure and inorganic fertilizers on common soil bacteria in different soil types. Agriculture, Ecosystems and Environment, 337. https://doi.org/10.1016/j.agee.2022.108044.
- 27. Lin, W., Lin, M., Zhou, H., Wu, H., Li, Z., and Lin, W. 2019. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS ONE, 14(5), 1–16. https://doi.org/10.1371/journal.pone.0217018.
- 28. Liu, S., Wang, J., Pu, S., Blagodatskaya, E., Kuzyakov, Y., and Razavi, B.S. 2020. Impact of manure on soil biochemical properties: A global synthesis. Science of the Total Environment, 745. https://doi.org/10.1016/j.scitotenv.2020.141003.
- 29. Liu, Y.R., Delgado-Baquerizo, M., Wang, J.T., Hu, H.W., Yang, Z., and He, J.Z. 2018. New insights into the role of microbial community composition in driving soil respiration rates. Soil Biology and Biochemistry, 118, 35–41. https://doi.org/10.1016/j.soilbio.2017.12.003.
- 30. Luan, H., Yuan, S., Gao, W., Tang, J., Li, R., Zhang, H., and Huang, S. 2021. Aggregate-related changes in living microbial biomass and microbial necromass associated with different fertilization patterns of greenhouse vegetable soils. European Journal of Soil Biology, 103. https://doi.org/10.1016/j.ejsobi.2021.103291.
- 31. Ma, S., Yu, Q., Chen, G., Su, H., Tang, W., Sun, Y., Zhou, Z., Jiang, L., Zhu, J., Chen, L., Zhu, B., and Fang, J. 2022. Aboveground net primary productivity mediates the responses of soil respiration to nutrient additions in two tropical montane rainforests. Agricultural and Forest Meteorology, 327. https://doi.org/10.1016/j.agrformet.2022.109200.
- 32. Mgelwa, A.S., Hu, Y.L., Xu, W.B., Ge, Z.Q., and Yu, T.W. 2019. Soil carbon and nitrogen availability are key determinants of soil microbial biomass and respiration in forests along urbanized rivers of southern China. Urban Forestry and Urban Greening, 43. https://doi.org/10.1016/j.ufug.2019.05.013.
- 33. Neina, D. 2019. The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science, (3). https://doi.org/10.1155/2019/5794869.
- 34. Olaya, J.F.C., Ordoñez, M.C., and Salcedo, J.R. 2019. Impact of nutritional management on available mineral nitrogen and soil quality properties in coffee agroecosystems. Agriculture (Switzerland), 9(12). https://doi.org/10.3390/agriculture9120260.
- 35. Prayogo, C., Kusumawati, I.A., Qurana, Z., Kurniawan, S., and Arfarita, N. 2021. Does different management and organic inputs in agroforesty system impact the changes on soil respiration and microbial biomass carbon? IOP Conference Series: Earth and Environmental Science, 743(1). https://doi.org/10.1088/1755-1315/743/1/012005.
- 36. Prayogo, C., Prastyaji, D., Prasetya, B., and Arfarita, N. 2021. Structure and composition of major arbuscular mycorrhiza (MA) under different farmer management of coffee and pine agroforestry system. Agrivita, 43(1), 146–163. https://doi.org/10.17503/agrivita.v1i1.2639.
- 37. Qi, R., Li, J., Lin, Z., Li, Z., Li, Y., Yang, X., Zhang, J., and Zhao, B. 2016. Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Applied Soil Ecology, 102, 36–45. https://doi.org/10.1016/j.apsoil.2016.02.004.
- 38. Ren, F., Sun, N., Xu, M., Zhang, X., Wu, L., and Xu, M. 2019. Changes in soil microbial biomass with manure application in cropping systems: A meta-analysis. Soil and Tillage Research, 194. https://doi.org/10.1016/j.still.2019.06.008.
- 39. Richter, A., Huallacháin, D., Doyle, E., Clipson, N., Van Leeuwen, J.P., Heuvelink, G.B., and Creamer, R.E. 2018. Linking diagnostic features to soil microbial biomass and respiration in agricultural grassland soil: A large-scale study in Ireland. European Journal of Soil Science, 69(3), 414–428. https://doi.org/10.1111/ejss.12551.
- 40. Singh, N.R., Kumar, D., Handa, A.K., Newaj, R., Prasad, M., Kamini, Kumar, N., Ram, A., Dev, I., Bhatt, B.P., Chaturvedi, O.P., Arunachalam, A., and Singh, L.N. 2022. Land use effect on soil organic carbon stocks, microbial biomass and basal respiration in Bundelkhand Region of Central India. Agricultural Research, 11(3), 454–464. https://doi.org/10.1007/s40003-021-00584-6.
- 41. Spohn, M., and Chodak, M. 2015. Microbial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soils. Soil Biology and Biochemistry, 81, 128–133. https://doi.org/10.1016/j.soilbio.2014.11.008.
- 42. Stevenson, B.A., Sarmah, A.K., Smernik, R., Hunter, D.W.F., and Fraser, S. 2016. Soil carbon characterization and nutrient ratios across land uses on two contrasting soils: Their relationships to microbial biomass and function. Soil Biology and Biochemistry, 97, 50–62. https://doi.org/10.1016/j.soilbio.2016.02.009.
- 43. Sujatmiko, T., and Ihsaniyati, H. 2018. Implication of climate change on coffee farmers’ welfare in Indonesia. IOP Conference Series: Earth and Environmental Science, 200. https://doi.org/10.1088/1755-1315/200/1/012054.
- 44. Suprayogo, D., Azmi, E.N., Ariesta, D.A., Sutejo, Y.A., Hakim, A.L., Prayogo, C., and McNamara, N.P. 2020. Tree and plant interactions in the agroforestry system: Does the management of coffee intensification disrupt the soil hydrological system and pine growth?. IOP Conference Series: Earth and Environmental Science, 449. https://doi.org/10.1088/1755-1315/449/1/012045.
- 45. Teixeira, H.M., Bianchi, F.J.J.A., Cardoso, I.M., Tittonell, P., and Peña-Claros, M. 2021. Impact of agroecological management on plant diversity and soil-based ecosystem services in pasture and coffee systems in the Atlantic forest of Brazil. Agriculture, Ecosystems and Environment, 305. https://doi.org/10.1016/j.agee.2020.107171.
- 46. Tridawati, A., Wikantika, K., Susantoro, T.M., Harto, A.B., Darmawan, S., Yayusman, L.F., and Ghazali, M.F. 2020. Mapping the distribution of coffee plantations from multi-resolution, multi-temporal, and multi-sensor data using a random forest algorithm. Remote Sensing, 12(23), 1–23. https://doi.org/10.3390/rs12233933.
- 47. Valdés, S.G.B., Montejo, D.A., Lancho, J.F.G, and Velarde, E.V. 2021. Soil respiration and distribution of aggregates in modified agroforestry systems of coffee and avocados in huatusco, Veracruz, Mexico. Soil and Environment, 40(1), 17–26. https://doi.org/10.25252/SE/2021/162291.
- 48. Vance, E.D., Brookes P.C., and Jenkinson, D.S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem, 19(6), 703–707. https://doi.org/10.1016/0038-0717(87)90052-6.
- 49. Velmourougane, K. 2017. Shade trees improve soil biological and microbial diversity in coffee based system in Western Ghats of India. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 87(2), 489–497. https://doi.org/10.1007/s40011-015-0598-6.
- 50. Wardle, D.A., and Ghani, A. 2018. A tale of two theories, a chronosequence and a bioindicator of soil quality. Soil Biology and Biochemistry, 121, A3–A7. https://doi.org/10.1016/j.soilbio.2018.01.005.
- 51. Wei, M., Hu, G., Wang, H., Bai, E., Lou, Y., Zhang, A., and Zhuge, Y. 2017. 35 years of manure and chemical fertilizer application alters soil microbial community composition in a Fluvo-aquic soil in Northern China. European Journal of Soil Biology, 82, 27–34. https://doi.org/10.1016/j.ejsobi.2017.08.002.
- 52. Widyati, E., Irianto, R.S.B., and Susilo, A. 2022. Rhizosphere upheaval after tree cutting: Soil sugar flux and microbial behavior. Communicative and Integrative Biology, 15(1), 105–114. https://doi.org/10.1080/19420889.2022.2068110.
- 53. Xu, W., Liu, W., Tang, S., Yang, Q., Meng, L., Wu, Y., Wang, J., Wu, L., Wu, M., Xue, X., Wang, W., and Luo, W. 2023. Long-term partial substitution of chemical nitrogen fertilizer with organic fertilizers increased SOC stability by mediating soil C mineralization and enzyme activities in a rubber plantation of Hainan Island, China. Applied Soil Ecology, 182. https://doi.org/10.1016/j.apsoil.2022.104691
- 54. Yao, X., Zeng, W., Zeng, H., and Wang, W. 2020. Soil microbial attributes along a chronosequence of Scots pine (Pinus sylvestris var. mongolica) plantations in northern China. Pedosphere. 30(4), 433–442. https://doi.org/10.1016/S1002-0160(17)60329-1.
- 55. Yusuf, M., Fernandes, A.A.R., Kurniawan, S., and Arisoesilaningsih, E. 2020. Initial soil properties of the restored degraded area under different vegetation cover in UB Forest, East Java, Indonesia. Journal of Physics: Conference Series, 1563. https://doi.org/10.1088/1742-6596/1563/1/012006.
- 56. Zhang, Q.Z., Dijkstra, F.A., Liu, X.R., Wang, Y.D., Huang, J., and Lu, N. 2014. Effects of biochar on soil microbial biomass after four years of consecutive application in the north China Plain. PLoS ONE, 9(7). https://doi.org/10.1371/journal.pone.0102062.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ced314ae-4aec-46fb-b250-b1812696652e