Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 27, nr 2 | 199--207
Tytuł artykułu

Fixed point theorems for a new generalization of contractive maps in incomplete metric spaces and its application in boundary value problems

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we obtain some fixed point theorems for multivalued mappings in incomplete metric spaces. Moreover, as motivated by the recent work of Olgun, Minak and Altun [M. Olgun, G. Minak and I. Altun, A new approach to Mizoguchi-Takahashi type fixed point theorems, J. Nonlinear Convex Anal. 17 (2016), no. 3, 579-587],we improve these theorems with a new generalization contraction condition for multivalued mappings in incomplete metric spaces. This result is a significant generalization of somewell-known results in the literature. Also,we provide some examples to show that our main theorems are a generalization of previous results. Finally, we give an application to a boundary value differential equation.
Wydawca

Rocznik
Strony
199--207
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
  • Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran, z.ahmadiz@yahoo.com
  • Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran, h.baghani@gmail.com
Bibliografia
  • [1] Z. Ahmadi, R. Lashkaripour and H. Baghani, A fixed point problem with constraint inequalities via a contraction in incomplete metric spaces, Filomat 32 (2018), no. 9, 3365-3379.
  • [2] I. Altun, G. Minak and H. Dağ, Multivalued F -contractions on complete metric spaces, J. Nonlinear Convex Anal. 16 (2015), no. 4, 659-666.
  • [3] H. Baghani, R. P. Agarwal and E. Karapınar, On coincidence point and fixed point theorems for a general class of multivalued mappings in incomplete metric spaces with an application, Filomat 33 (2019), no. 14, 4493-4508.
  • [4] H. Baghani, M. Eshaghi Gordji and M. Ramezani, Orthogonal sets: The axiom of choice and proof of a fixed point theorem, J. Fixed Point Theory Appl. 18 (2016), no. 3, 465-477.
  • [5] H. Baghani and M. Ramezani, A fixed point theorem for a new class of set-valued mappings in R-complete (not necessarily complete) metric spaces, Filomat 31 (2017), no. 12, 3875-3884.
  • [6] H. Baghani and M. Ramezani, Coincidence and fixed points for multivalued mappings in incomplete metric spaces with applications, Filomat 33 (2019), no. 1, 13-26.
  • [7] L. Ćirić, Multi-valued nonlinear contraction mappings, Nonlinear Anal. 71 (2009), no. 7-8, 2716-2723.
  • [8] W.-S. Du, Some new results and generalizations in metric fixed point theory, Nonlinear Anal. 73 (2010), no. 5, 1439-1446.
  • [9] Y. Feng and S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl. 317 (2006), no. 1, 103-112.
  • [10] M. E. Gordji, M. Rameani, M. de la Sen and Y. J. Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory 18 (2017), no. 2, 569-578.
  • [11] T. Kamran and Q. Kiran, Fixed point theorems for multi-valued mappings obtained by altering distances, Math. Comput. Modelling 54 (2011), no. 11-12, 2772-2777.
  • [12] D. Klim and D. Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces, J. Math. Anal. Appl. 334 (2007), no. 1, 132-139.
  • [13] G. Mınak and I. Altun, Some new generalizations of Mizoguchi-Takahashi type fixed point theorem, J. Inequal. Appl. 2013 (2013), Paper No. 493.
  • [14] N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989), no. 1, 177-188.
  • [15] S. B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488.
  • [16] M. Olgun, G. Minak and I. Altun, A new approach to Mizoguchi-Takahashi type fixed point theorems, J. Nonlinear Convex Anal. 17 (2016), no. 3, 579-587.
  • [17] M. Ramezani and H. Baghani, The Meir-Keeler fixed point theorem in incomplete modular spaces with application, J. Fixed Point Theory Appl. 19 (2017), no. 4, 2369-2382.
  • [18] S. Reich, Some problems and results in fixed point theory, in: Topological Methods in Nonlinear Functional Analysis (Toronto 1982), Contemp. Math. 21, American Mathematical Society, Providence (1983), 179-187.
  • [19] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012 (2012), Article ID 94.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ce775646-a8bf-4a42-b5a0-f3d45c4ca6b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.