Warianty tytułu
Języki publikacji
Abstrakty
We give a meaning to the nonlinear characteristic Cauchy problem for the wave equation in base form by replacing it by a family of non-characteristic ones. This leads to a well-formulated problem in an appropriate algebra of generalized functions. We prove existence of a solution and we precise how it depends on the choice made. We also check that in the classical case (non-characteristic) our new solution coincides with the classical one.
Czasopismo
Rocznik
Tom
Strony
1--29
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
- Equipe Analyse Algébrique Non Linéaire, Université des Antilles et de la Guyane, Laboratoire CEREGMIA, Campus de Schoelcher, BP 7209, 97275 Schoelcher Cedex, Martinique, allaud@martinique.univ-ag.fr
autor
- Equipe Analyse Algébrique Non Linéaire, Université des Antilles et de la Guyane, Laboratoire CEREGMIA, Campus de Schoelcher, BP 7209, 97275 Schoelcher Cedex, Martinique, devoue-vi@orange.fr
Bibliografia
- [1] J.-F. Colombeau, Elementary Introduction to New Generalized Functions, North-Holland Math. Stud. 113, North-Holland, Amsterdam, 1984.
- [2] J.-F. Colombeau, New Generalized Functions and Multiplication of Distributions, North-Holland, Amsterdam, 1984.
- [3] R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, vol. 3: Transformations, Sobolev, opérateurs, Masson, Pairs, 1987.
- [4] A. Delcroix, Remarks on the embedding of spaces of distributions into spaces of Colombeau generalized functions, Novi Sad J. Math. 35 (2005), 27-40.
- [5] A. Delcroix, Some properties of (C, E, P)-algebras: Overgeneration and 0-order estimates, preprint (2008), http://hal.archives-ouvertes.fr/hal-00326671/fr/.
- [6] A. Delcroix and D. Scarpalézos, Topology on asymptotic algebras of generalized functions and applications, Monatsh. Math. 129 (2000), 1-14.
- [7] A. Delcroix, V. Dévoué and J.-A. Marti, Generalized solutions of singular differential problems. Relationship with classical solutions, J. Math. Anal. Appl. 353 (2009), 386-402.
- [8] A. Delcroix, V. Dévoué and J.-A. Marti, Well posed problems in algebras of generalized functions, Appl. Anal. 90 (2011), 1747-1761.
- [9] V. Dévoué, On generalized solutions to the wave equation in canonical form, Disser-tationes Math. 443 (2007), 1-69.
- [10] V. Dévoué, Generalized solutions to a non-Lipschitz Cauchy problem, J. Appl. Anal. 15 (2009), 1-32.
- [11] V. Dévoué, Generalized solutions to a non-Lipschitz Goursat problem, Differ. Equ. Appl. 1 (2009), 153-178.
- [12] Y. V. Egorov, On the solubility of differential equations with simple characteristics, Russ. Math. Surv. 26 (1971), 113-130.
- [13] Y. V. Egorov and M. A. Shubin, Partial Differential Equations, Springer, 1993.
- [14] P. R. Garabedian, Partial Differential Equations, Wiley, 1964.
- [15] L. Gårding, T. Kotake and J. Leray, Uniformisation et développement asymptotique de la solution du problème de Cauchy linéaire, à données holomorphes; analogie avec la théorie des ondes asymptotiques et approchées. (Problème de Cauchy I bis et VI), Bull. Soc. Math. France 92 (1964), 263-361.
- [16] M. Grosser, M. Kunzinger, M. Oberguggenberger and R. Steinbauer, Geometrie Theory of Generalized Functions with Applications to General Relativity, Kluwer Academic Press, 2001.
- [17] Y Hamada, Problème de Cauchy analytique, Publ. RIMS Kyoto Univ. 39 (2003), 601-624.
- [18] L. Hörmander, On the characteristic Cauchy problem, Ann. Math. 88 (1968), 341-370.
- [19] J.-A. Marti, Fundamental structures and asymptotic microlocalization in sheaves of generalized functions, Integral Transforms Spec. Fund. 6 (1998), 223-228.
- [20] J.-A. Marti, (C, E, P)-sheaf structure and applications, in: Nonlinear Theory of Generalized Functions (Vienna 1977), Chapman & Hall/CRC Res. Notes Math. 401, Chapman & Hall, Boca Raton (1999), 175-186.
- [21] J.-A. Marti, Non-linear algebraic analysis of delta shock wave to Burgers’ equation, Pacific J. Math. 210 (2003), 165-187.
- [22] J.-A. Marti, Multiparametric algebras and characteristic Cauchy problem, in: Non-Linear Algebraic Analysis and Applications, Cambridge Sci. Publ. Ltd., Cambridge (2004), 181-192.
- [23] M. Nedeljkov, M. Oberguggenberger and S. Pilipovic, Generalized solution to a semilinear wave equation, Nonlinear Anal. 61 (2005), 461-475.
- [24] M. Nedeljkov, S. Pilipovic and D. Scarpalézos, The Linear Theory of Colombeau Generalized Functions, Pitman Res. Notes Math. Ser. 385, Longman Sci. Tech., Harlow, 1998.
- [25] M. Oberguggenberger, Multiplication of Distributions and Applications to Partial Differential Equations, Longman Sci. Tech., Harlow, 1992.
- [26] D. Scarpalézos, Colombeau’s generalized functions: Topological structures; Microlocal properties. A simplified point of view. Part I, Bull. Cl. Sci. Math. Nat. Sci. Math. 25(2000), 89-114.
- [27] D. Scarpalézos, Colombeau’s generalized functions: Topological structures; Microlocal properties. A simplified point of view. Part II, Publ. Inst. Math. Novi Sad 76(2004), 111-125.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ce6afc74-3297-4f69-b97a-477d17d82049