Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 45, no 2 | 301--309
Tytuł artykułu

Effects of cooling methods and key parameters on the cooling performance of oil-cooling motor with hairpin windings

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on the electromagnetic thermal coupling analysis method, the cooling performance of different motor cooling models and the influence of key parameters of the cooling system on the cooling effect of the motor are investigated. First, the losses of various parts of the permanent magnet synchronous motors are obtained through electromagnetic calculations; the analysis results show that the stator core loss, winding copper loss, and eddy current loss of permanent magnets exceed 95% of the total loss of the motor. Second, the cooling performance of the three motor was compared and analyzed. The axial housing liquid cooling and oil spray cooling (Model B) has a better cooling performance and a higher cooling efficiency. Compared with the other two motor models, Model B can reduce the time to reach steady-state temperature by about 81.8%.Then the effects of coolant volume flow rate, coolant inlet temperature, and ambient temperature on the cooling effect of the motor are investigated. The results show that within a certain range, the rate of coolant inlet temperature change is approximately proportional to the internal temperature rise of the motor. The oil spray cooling system of Model B is less affected by ambient temperature and can be used for motor cooling in complex environments. The results of this study can provide a useful guidance for the design of the cooling system and the selection of coolant volume flow rate for oil-cooling motor with hairpin windings.
Wydawca

Rocznik
Strony
301--309
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
  • School of Smart Health, Chongqing College of Electronic Engineering, Chongqing, 401331, China, liugw215@126.com
  • Department of Technology, Chongqing Tsingshan Industrial Co. Ltd., Chongqing, 402776, Chin
autor
  • Department of Technology, Chongqing Tsingshan Industrial Co. Ltd., Chongqing, 402776, Chin
autor
  • Department of Technology, Chongqing Tsingshan Industrial Co. Ltd., Chongqing, 402776, Chin
autor
  • College of Mechanical Engineering, Chongqing University of Technology, Chongqing 400044, China
autor
  • College of Mechanical Engineering, Chongqing University of Technology, Chongqing 400044, China
autor
  • School of Smart Health, Chongqing College of Electronic Engineering, Chongqing, 401331, China
autor
  • Hubei University of Automotive Technology, Shiyan Hubei, 442002, China
Bibliografia
  • [1] Kumar, A., Chandekar, A., Deshmukh, P.W., & Ugale, R.T. (2023). Development of electric vehicle with permanent magnet synchronous motor and its analysis with drive cycles in MATLAB/Simulink. Materials Today: Proceedings, 72,643−651. doi: 10.1016/j.matpr.2022.08.304
  • [2] Gammaidoni, T., Zembi, J., Battistoni, M., Biscontini, G., & Mariani, A. (2023). CFD analysis of an electric motor’s cooling system: Model validation and solutions for optimization. Case Studies in Thermal Engineering, 49, 103349. doi: 10.1016/j.csite. 2023.103349
  • [3] Ha, T., & Kim, D.K. (2021). Study of injection method for maximizing oil-cooling performance of electric vehicle motor withhairpin winding. Energies, 14(3), 747. doi: 10.3390/en14030747
  • [4] Zhang, F., Gerada, D., Xu, Z., Liu, C., Zhang, H., Zou, T., Chong, Y.C., & Gerada, C. (2021). A thermal modeling approach and experimental validation for an oil spray-cooled hairpin winding machine. IEEE Transactions on Transportation Electrification,7(4), 2914–2926. doi: 10.1109/tte.2021.3067601
  • [5] Ha, T., Kang, Y., Kim, N.S., Park, S.H., Lee, S.H., Kim, D.K., & Ryou, H.S. (2021). Cooling effect of oil cooling method on electric vehicle motors with hairpin winding. Journal of Mechanical Science and Technology, 35(1), 407–415. doi: 10.1007/s12206-020-1240-y
  • [6] Gai, Y., Kimiabeigi, M., Chuan Chong, Y., Widmer, J.D., Deng, X., Popescu, M., Goss, J., Staton, D.A., & Steven, A. (2019). Cooling of automotive traction motors: Schemes, examples, and computation methods. IEEE Transactions on Industrial Electronics, 66(3), 1681–1692. doi: 10.1109/tie.2018.2835397
  • [7] Carriero, A., Locatelli, M., Ramakrishnan, K., Mastinu, G., & Gobbi, M. (2018). A review of the state of the art of electric traction motors cooling techniques. SAE Technical Paper, 2018-01-0057. doi: 10.4271/2018-01-0057
  • [8] Liange, H., Hongling, C., & Wenjun, S. (2022). Erratum to ˮBoiling heat transfer-based temperature rise characteristics of automotive permanent magnet synchronous motors at peak operating conditions”. Journal of Mechanical Science and Technology,36(8), 4335–4335. doi: 10.1007/s12206-022-0750-1
  • [9] Ulbrich, S., Kopte, J., & Proske, J. (2018). Cooling fin optimization on a TEFC electrical machine housing using a 2-D conjugate heat transfer model. IEEE Transactions on Industrial Electronics (1982), 65(2), 1711–1718. doi: 10.1109/tie.2017.2748051
  • [10] Peng, H.S., & Lai, F.H. (2019). Investigation of parameters affecting heat transfer and fluid flow of a TEFC electric motor by using Taguchi method. IOP Conference Series. Materials Science and Engineering, 491, 012021. doi: 10.1088/1757-899x/491/1/012021
  • [11] Li, J., Lu, Y., Cho, Y.H., & Qu, R. (2019). Design, analysis, and prototyping of a water-cooled axial-flux permanent-magnet machine for large-power direct-driven applications. IEEE Transactions on Industry Applications, 55(4), 3555–3565. doi: 10.1109/tia.2019.2907890
  • [12] Wu, P.S., Hsieh, M.F., Cai, W.L., Liu, J.H., Huang, Y.T., Caceres, J.F., & Chang, S.W. (2019). Heat transfer and thermal management of interior permanent magnet synchronous electric motor. Inventions, 4(4), 69. doi: 10.3390/inventions4040069
  • [13] Li, Y., Li, Q., Fan, T., & Wen, X. (2023). Heat dissipation design of end winding of permanent magnet synchronous motor for electric vehicle. Energy Reports, 9, 282–288. doi: 10.1016/j.egyr.2022.10.416
  • [14] Gai, Y., Ma, C., Xu, Y., & Chong, Y.C. (2021). Numerical prediction and measurement of pressure drop and heat transfer in a water‐cooled hollow‐shaft rotor for a traction motor application. IET Electric Power Applications, 15(4), 476–486. doi:10.1049/elp2.12042
  • [15] Lindh, P., Petrov, I., Pyrhonen, J., Scherman, E., Niemela, M., & Immonen, P. (2019). Direct liquid cooling method verified with a permanent-magnet traction motor in a bus. IEEE Transactions on Industry Applications, 55(4), 4183–4191. doi: 10.1109/tia.2019.2908801
  • [16] Madonna, V., Walker, A., Giangrande, P., Serra, G., Gerada, C., & Galea, M. (2019). Improved thermal management and analysis for Stator end-windings of electrical machines. IEEE Transactions on Industrial Electronics (1982), 66(7), 5057–5069. doi:10.1109/tie.2018.2868288
  • [17] Liu, C., Xu, Z., Gerada, D., Li, J., Gerada, C., Chong, Y.C., Popescu, M., Goss, J., Staton, D., & Zhang, H. (2020). Experimental investigation on oil spray cooling with hairpin windings. IEEE Transactions on Industrial Electronics (1982), 67(9), 7343–7353. doi: 10.1109/tie.2019.2942563
  • [18] Wang, X., Wan, Z., & Wen, W. (2021). Heat dissipation of three permanent magnet synchronous motors integrated with heat pipes. International Journal of Thermophysics, 42(5). doi:10.1007/s10765-021-02819-8
  • [19] Wang, Z., Huang, X., & Liu, J. (2023). Comparative investigation and optimization of a direct cooling structure for the primary core and windings in permanent magnet synchronous linear motors. Applied Thermal Engineering, 228, 120499. doi: 10.1016/j.applthermaleng.2023.120499
  • [20] Wang, X., Li, B., Huang, K., Yan, Y., Stone, I., & Worrall, S. (2022). Experimental investigation on end winding thermal management with oil spray in electric vehicles. Case Studies in Thermal Engineering, 35, 102082. doi: 10.1016/j.csite.2022.102082
  • [21] Guo, H., He, X., Xu, J., Tian, W., Ding, X., Ju, L., & Li, D. (2023). Design and analysis of a novel hybrid cooling method of high-speed high-power permanent magnet assisted synchronous reluctance starter/generator in aviation applications. Chinese Journal of Aeronautics, 36(3), 285–302. doi: 10.1016/j.cja.2022.08.017
  • [22] Zhao, A., Duwig, C., Liu, C., Gerada, D., & Leksell, M. (2023). Parameter study for oil spray cooling on end windings of electric machines via Eulerian–Lagrangian simulation. Applied Thermal Engineering, 235, 121281. doi: 10.1016/j.applthermaleng.2023.121281
  • [23] Zhao, X., Cui, H., Teng, Y., Chen, Z., & Liu, G. (2023). Design and analysis of a high loss density motor cooling system with water cold plates. Global Energy Interconnection, 6(3), 343–354. doi: 10.1016/j.gloei.2023.06.008
  • [24] Gundabattini, E., Kuppan, R., Solomon, D.G., Kalam, A., Kothari, D.P., & Abu Bakar, R. (2021). A review on methods of finding losses and cooling methods to increase efficiency of electric machines. Ain Shams Engineering Journal, 12(1), 497–505.doi: 10.1016/j.asej.2020.08.014
  • [25] Zhang, Y., Wang, L., Zhang, Y., & Zhang, Y. (2021). Design and thermal characteristic analysis of motorized spindle cooling system. Advances in Mechanical Engineering, 13(5),168781402110208. doi: 10.1177/16878140211020878
  • [26] Bossmanns, B., & Tu, J.F. (1999). A thermal model for high speed motorized spindles. International Journal of Machine Tools and Manufacture, 39(9), 1345–1366. doi: 10.1016/s0890-6955(99)00005-x
  • [27] Madhavan, S., Devdatta, R., Gundabattini, E., & Mystkowski, A. (2022). Thermal analysis and heat management strategies for an induction motor, a review. Energies, 15(21), 8127. doi: 10.3390/en15218127
  • [28] Credo, A., Tursini, M., Villani, M., Di Lodovico, C., Orlando, M., & Frattari, F. (2021). Axial flux PM in-wheel motor for electric Vehicles: 3D multiphysics analysis. Energies, 14(8), 2107.doi: 10.3390/en14082107
  • [29] Jie, D. (2019). Thermal performance analysis of motor based on motor-CAD. AIP Conference Proceedings, 2073(1), 020049. 3rd International Conference on Advances in Materials, Machinery, Electronics, 19−20 January, Wuhan, China. doi: 10.1063/1.5090703
  • [30] Xie, Y., Fan, Y., Cai, W., & Xin, W. (2023). Oil circuit structure optimization design and temperature field calculation of oil cooled motor with hairpin winding. Electric Machines and Control, 27, 37–45. doi: 10.15938/j.emc.2023.05.005
  • [31] Wang, C., Zhang, Z., & Liu, Y. (2021). Optimization of rotor eddy-current loss and heat dissipation for high torque density hybrid excitation synchronous motor with magnetic shunting rotor. Proceedings of the of the Chinese Society of Electrical Engineering, 41(21), 7476–7486 (in Chinese). doi: 10.13334/j.0258-8013.pcsee.201100
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ce689f69-e1a0-4f8d-a825-bd292bf7d8b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.