Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | nr 2 | 20--28
Tytuł artykułu

Simulation tests of a drive shaft and propeller control subsystem for a fast boat

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an analysis of the acceleration of a fast boat using a simulation model. Mathematical equations of ship motion dynamics with two types of propeller capabilities are developed using MATLAB and Simulink as simulation tools. The equations are extended to include the acting thrust, resistance, propeller’s performance curves, and the PID governor curve for the acceleration manoeuvre. The application models the dynamic differential equations representing the vessel dynamics in one degree of freedom. MATLAB code was used to develop the ship acceleration as a multibody system. Modules of hydrodynamic forces, resistance, moments, and propeller performances were implemented to simulate the ship manoeuvring process. A comparison of the results for the boat’s propulsion performance with two different propellers and the characteristics of the PID governor, which controls the fuel dose in the gas turbines, was carried out. We present a summary including a comparative analysis of the results for the boat dynamics with and without the PID governor. The results obtained here confirm significant discrepancies between the results of numerical simulations with and without the PID governor.
Słowa kluczowe
Wydawca

Rocznik
Tom
Strony
20--28
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Polish Naval Academy, Gdynia, Poland
Bibliografia
  • 1. T. H. Le et al., “Numerical investigation on the effect of trim on ship resistance by RANSE method,” Applied Ocean Research, vol. 111, 2021, doi: 10.1016/j.apor.2021.102642.
  • 2. S. Song, M. Terziev, T. Tezdogan, Y. K. Demirel, C. De Marco Muscat-Fenech, and A. Incecik, “Investigating roughness effects on ship resistance in shallow waters,” Ocean Engineering, vol. 270, 2023, doi: 10.1016/j.oceaneng.2023.113643.
  • 3. C. G. Kallstrom and K. J. Astrom, “Experiences of system identification applied to ship steering,” Automatica, vol. 17, no. 1, 1981, doi: 10.1016/0005-1098(81)90094-7.
  • 4. T. Perez, A. Ross, and T. Fossen, “A 4-DOF simulink model of a coastal patrol vessel for manoeuvring in waves,” in Proceedings of the 7th IFAC Conference on Manoeuvring and Control of Marine Craft, 2006.
  • 5. A. Dogrul, S. Song, and Y. K. Demirel, “Scale effect on ship resistance components and form factor,” Ocean Engineering, vol. 209, 2020, doi: 10.1016/j.oceaneng.2020.107428.
  • 6. S. Sutulo and C. Guedes Soares, “On the application of empiric methods for prediction of ship manoeuvring properties and associated uncertainties,” Ocean Engineering, vol. 186, 2019, doi: 10.1016/j.oceaneng.2019.106111.
  • 7. S. Tavakoli, S. Najafi, E. Amini, and A. Dashtimansh, “Ship acceleration motion under the action of a propulsion system: a combined empirical method for simulation and optimisation,” Journal of Marine Engineering and Technology, vol. 20, no. 3, 2021, doi: 10.1080/20464177.2020.1827490.
  • 8. Z. Świder, L. Trybus, and A. Stec, “Consistent Design of PID Controllers for an Autopilot,” Polish Maritime Research, vol. 30, no. 1, 2023, doi: 10.2478/pomr-2023-0008.
  • 9. E. V. (ed. ) Lewis, Principles of naval architecture. 2nd reversion, vol IlL Motions in waves and controllability, vol. 3. 1989.
  • 10. A. Stotsky and A. Forgo, “Recursive spline interpolation method for real time engine control applications,” Control Eng Pract, vol. 12, no. 4, 2004, doi: 10.1016/S0967-0661(03)00114-X.
  • 11. S. M. Sajedi and P. Ghadimi, “Experimental and Numerical Investigation of Stepped Planing Hulls in Finding an Optimized Step Location and Analysis of Its Porpoising Phenomenon,” Math Probl Eng, vol. 2020, 2020, doi: 10.1155/2020/3580491.
  • 12. “Some Other Classes of Numerical Methods,” in Partial Differential Equations with Numerical Methods, 2008. doi: 10.1007/978-3-540-88706-5_14.
  • 13. A. Esfandiari, A. Hosseini Monjezi, M. Rezakazemi, and M. Younas, “Computational fluid dynamic modeling of water desalination using low-energy continuous direct contact membrane distillation process,” Appl Therm Eng, vol. 163, 2019, doi: 10.1016/j.applthermaleng.2019.114391.
  • 14. L. Birk, “Holtrop and Mennen’s Method,” in Fundamentals of Ship Hydrodynamics, 2019. doi: 10.1002/9781119191575.ch50.
  • 15. Z. Dong, J. Li, W. Liu, H. Zhang, S. Qi, and Z. Zhang, “Adptive Heading Control of Underactuated Unmanned Surface Vehicle Based on Improved Backpropagation Neural Network,” Polish Maritime Research, vol. 30, no. 1, 2023, doi:10.2478/pomr-2023-0006.
  • 16. T. C. My, L. D. Khanh, and P. M. Thao, “An Artificial Neural Networks (ANN) Approach for 3 Degrees of Freedom Motion Controlling,” International Journal on Informatics Visualization, vol. 7, no. 2, 2023, doi: 10.30630/joiv.7.2.1817.
  • 17. J. Yang, J. Feng, Y. Li, A. Liu, J. Hu, and Z. Ma, “Water-exit process modeling and added-mass calculation of the submarine-launched missile,” Polish Maritime Research, vol. 24, no. S3, 2017, doi: 10.1515/pomr-2017-0118.
  • 18. P. A. Wilson, “A review of the methods of calculation of added resistance for ships in a seaway,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 20, no. 1–3, 1985, doi: 10.1016/0167-6105(85)90018-2.
  • 19. S. Song et al., “Experimental investigation on the effect of heterogeneous hull roughness on ship resistance,” Ocean Engineering, vol. 223, 2021, doi: 10.1016/j.oceaneng.2021. 108590.
  • 20. D. Bailey, “The NPL Round Bilge Displacement Hull Series,”Maritime Technology Monograph No. 4. Royal Institution of Naval Architectcs. 1976.
  • 21. M. M. Bernitsas, D. Ray, and P. Kinley, “KT, KQ and efficiency curves for the wageningen b-series propellers,” 237. 1981.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ce49c4ef-ec6d-4fd9-8f7d-45ddb9276bce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.