Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2022 | Vol. 70, no 1 | 265--282
Tytuł artykułu

Groundwater potentiality deciphering and sensitivity study using remote sensing technique and fuzzy approach

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Elevating industrialization and urbanization have increased water demand, resulting in a water crisis and plummeting groundwater resources day by day. The present research proposed a model to decipher groundwater potential zones by integrating remote sensing (RS) data with fuzzy logic in an ArcGIS environment. Eleven groundwater potentiality influencing factors have been employed for the study. Each layer was passed through a multicollinearity check, resulting in no collinearity found between the layers. Furthermore, each layer was reclassified, ranked according to their potential to the groundwater occurrence, and assigned fuzzy values. The groundwater potential zones were developed by applying an overlay operation to integrate eleven fuzzy layers. According to the fuzzy value, the Surat district is divided into four potential zones: very poor, poor, moderate, and good. The result shows that 32.21% (1343 km2 ) and 31.63% (1319 km2 ) have good and moderate groundwater potential zones, respectively. Additionally, the map removal sensitivity study illustrated that drainage density, lineament density, and rainfall are more sensitive to potential zones in the study area. The potential zones have been verified by a false matrix, indicating substantial agreement between groundwater levels and potential zones with an overall accuracy of 81.1%. Thus, the integration of RS data and fuzzy-based method is an efficient method for deciphering groundwater potential zones and can be applied anywhere with necessary adjustment.
Wydawca

Czasopismo
Rocznik
Strony
265--282
Opis fizyczny
Bibliogr. 64 poz.
Twórcy
  • Civil Engineering Department, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India, fenilgandhi15@gmail.com
  • Civil Engineering Department, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India, jnp@ced.svnit.ac.in
Bibliografia
  • 1. Acharya T, Kumbhakar S, Prasad R, Mondal S, Biswas A (2019) Delineation of potential groundwater recharge zones in the coastal area of north-eastern India using geoinformatics. Sustain Water Resourc Manag 5(2):533–540. https://doi.org/10.1007/s40899-017-0206-4
  • 2. Achu AL, Thomas J, Reghunath R (2020) Multi-criteria decision analysis for delineation of groundwater potential zones in a tropical river basin using remote sensing, GIS and analytical hierarchy process (AHP). Groundwater Sustain Develop 10:100365. https://doi.org/10.1016/j.gsd.2020.100365
  • 3. Al Saud M (2010) Mapping potential areas for groundwater storage in Wadi Aurnah Basin, western Arabian Peninsula, using remote sensing and geographic information system techniques. Hydrogeol J 18(6):1481–1495. https://doi.org/10.1007/s10040-010-0598-9
  • 4. Ali SA, Parvin F, Vojteková J, Costache R, Linh NTT, Pham QB et al (2021) GIS-based landslide susceptibility modeling: a comparison between fuzzy multi-criteria and machine learning algorithms. Geosci Front 12(2):857–876. https://doi.org/10.1016/j.gsf.2020.09.004
  • 5. Arshad A, Zhang Z, Zhang W, Dilawar A (2020) Mapping favorable groundwater potential recharge zones using a GIS-based analytical hierarchical process and probability frequency ratio model: a case study from an agro-urban region of Pakistan. Geosci Front 11(5):1805–1819. https://doi.org/10.1016/j.gsf.2019.12.013
  • 6. Bear J, Verruijt A (1987) Modeling groundwater flow and pollution, vol 2. Springer, New York
  • 7. Brahim FB, Boughariou E, Bouri S (2021) Multicriteria-analysis of deep groundwater quality using WQI and fuzzy logic tool in GIS: A case study of Kebilli region, SW Tunisia. J Afr Earth Sci 180:104224. https://doi.org/10.1016/j.jafrearsci.2021.104224
  • 8. Cai T, Li X, Ding X, Wang J, Zhan J (2019) Flood risk assessment based on hydrodynamic model and fuzzy comprehensive evaluation with GIS technique. Int J Disast Risk Reduc 35:101077. https://doi.org/10.1016/j.ijdrr.2019.101077
  • 9. CGWB (2012). http://cgwb.gov.in/District_Profile/Gujarat/Surat.pdf
  • 10. Conicelli B, Hirata R, Galvão P, Bernardino M, Simonato M, Abreu MC et al (2021) Determining groundwater availability and aquifer recharge using GIS in a highly urbanized watershed. J S Am Earth Sci 106:103093. https://doi.org/10.1016/j.jsames.2020.103093
  • 11. Corsini A, Cervi F, Ronchetti F (2009) Weight of evidence and artificial neural networks for potential groundwater spring mapping: an application to the Mt. Modino area (Northern Apennines, Italy). Geomorphology 111(1–2):79–87. https://doi.org/10.1016/j.geomorph.2008.03.015
  • 12. Das S (2017) Delineation of groundwater potential zone in hard rock terrain in Gangajalghati block, Bankura district, India using remote sensing and GIS techniques. Model Earth Syst Environ 3(4):1589–1599. https://doi.org/10.1007/s40808-017-0396-7
  • 13. Das S (2019) Comparison among influencing factor, frequency ratio, and analytical hierarchy process techniques for groundwater potential zonation in Vaitarna basin, Maharashtra, India. Groundwater Sustain Develop 8:617–629. https://doi.org/10.1016/j.gsd.2019.03.003
  • 14. Das B, Pal SC, Malik S, Chakrabortty R (2019) Modeling groundwater potential zones of Puruliya district, West Bengal, India using remote sensing and GIS techniques. Geol Ecol Landsc 3(3):223–237. https://doi.org/10.1080/24749508.2018.1555740
  • 15. Deepa S, Venkateswaran S, Ayyandurai R, Kannan R, Prabhu MV (2016) Groundwater recharge potential zones mapping in upper Manimuktha Sub basin Vellar river Tamil Nadu India using GIS and remote sensing techniques. Model Earth Syst Environ 2(3):1–13. https://doi.org/10.1007/s40808-016-0192-9
  • 16. DeVellis RF (2005) Inter-rater reliability. Encyclopedia of Social Measurement.
  • 17. Dhanaraj G (2021) Study of selected influential criteria on groundwater potential storage using geospatial technology and multi-criteria decision analysis (MCDA) approach: a case study. Egyt J Remote Sens Space Sci. https://doi.org/10.1016/j.ejrs.2021.06.004
  • 18. Fathi A, Lee T, Mohebzadeh H (2019) Allocating underground dam sites using remote sensing and GIS case study on the southwestern plain of Tehran Province, Iran. J Indian Soc Remote Sens 47(6):989–1002. https://doi.org/10.1007/s12524-019-00961-3
  • 19. Gaur S, Johannet A, Graillot D, Omar PJ (2021) Modeling of groundwater level using artificial neural network algorithm and WA-SVR model. In: Groundwater resources development and planning in the semi-arid region. Springer, Cham, pp 129–150. doi:https://doi.org/10.1007/978-3-030-68124-1_7
  • 20. Ghosh A, Dey P (2021) Flood Severity assessment of the coastal tract situated between Muriganga and Saptamukhi estuaries of Sundarban delta of India using Frequency Ratio (FR), Fuzzy Logic (FL), Logistic Regression (LR) and Random Forest (RF) models. Reg Stud Mar Sci 42:101624. https://doi.org/10.1016/j.rsma.2021.101624
  • 21. Goitsemang T, Das DM, Raul SK, Subudhi CR, Panigrahi B (2020) Assessment of groundwater potential in the Kalahandi district of Odisha (India) using remote sensing, geographic information system and analytical hierarchy process. J Indian Soc Remote Sens 48(12):1739–1753. https://doi.org/10.1007/s12524-020-01188-3(0123
  • 22. Haque S, Kannaujiya S, Taloor AK, Keshri D, Bhunia RK, Ray PKC, Chauhan P (2020) Identification of groundwater resource zone in the active tectonic region of Himalaya through earth observatory techniques. Groundwater Sustain Develop 10:100337. https://doi.org/10.1016/j.gsd.2020.100365
  • 23. Igwe O, Ifediegwu SI, Onwuka OS (2020) Determining the occurrence of potential groundwater zones using integrated hydro-geomorphic parameters, GIS and remote sensing in Enugu State, Southeastern, Nigeria. Sustain Water Resour Manag 6:1–14. https://doi.org/10.1007/s40899-020-00397-5
  • 24. Jahan CS, Rahaman MF, Arefin R, Ali MS, Mazumder QH (2019) Delineation of groundwater potential zones of Atrai-Sib river basin in north-west Bangladesh using remote sensing and GIS techniques. Sustain Water Resour Manag 5(2):689–702. https://doi.org/10.1007/s40899-018-0240-x
  • 25. Jena S, Panda RK, Ramadas M, Mohanty BP, Pattanaik SK (2020) Delineation of groundwater storage and recharge potential zones using RS-GIS-AHP: application in arable land expansion. Remote Sens Appl Soc Environ 19:100354. https://doi.org/10.1016/j.rsase.2020.100354
  • 26. Jensen JR (1996) Thematic information extraction: image classification. In: Introductory digital image processing: a remote sensing perspective, 197–256.
  • 27. Jha BM, Sinha SK (2009) Towards better management of ground water resources in India. QJ 24(4):1–20
  • 28. Jha MK, Shekhar A, Jenifer MA (2020) Assessing groundwater quality for drinking water supply using hybrid fuzzy-GIS-based water quality index. Water Res 179:115867. https://doi.org/10.1016/j.watres.2020.115867
  • 29. Jothibasu A, Anbazhagan S (2016) Modeling groundwater probability index in Ponnaiyar River basin of South India using analytic hierarchy process. Model Earth Syst Environ 2(3):1–14
  • 30. Kumar VA, Mondal NC, Ahmed S (2020) Identification of groundwater potential zones using RS, GIS and AHP techniques: a case study in a part of Deccan volcanic province (DVP), Maharashtra, India. J Indian Soc Remote Sens 48(3):497–511. https://doi.org/10.1007/s12524-019-01086-3(012
  • 31. Landis JR, Koch GG (1977) An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics, 363–374. https://www.jstor.org/stable/2529786
  • 32. Lee S, Hong SM, Jung HS (2018) GIS-based groundwater potential mapping using artificial neural network and support vector machine models: the case of Boryeong city in Korea. Geocarto Int 33(8):847–861. https://doi.org/10.1080/10106049.2017.1303091
  • 33. Machireddy SR (2019) Delineation of groundwater potential zones in South East part of Anantapur District using remote sensing and GIS applications. Sustain Water Resour Manag 5(4):1695–1709. https://doi.org/10.1007/s40899-019-00324-3
  • 34. Machiwal D, Jha MK, Mal BC (2011) Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS and MCDM techniques. Water Resour Manag 25(5):1359–1386. https://doi.org/10.1007/s11269-010-9749-y
  • 35. Mahmoud SH, Alazba AA (2016) Integrated remote sensing and GIS-based approach for deciphering groundwater potential zones in the central region of Saudi Arabia. Environ Earth Sci 75(4):344. https://doi.org/10.1007/s12665-015-5156-2
  • 36. Mohapatra JB, Jha P, Jha MK, Biswal S (2021) Efficacy of machine learning techniques in predicting groundwater fluctuations in agro-ecological zones of India. Sci Total Environ 785:147319. https://doi.org/10.1016/j.scitotenv.2021.147319
  • 37. Mukherjee I, Singh UK (2020) Delineation of groundwater potential zones in a drought-prone semi-arid region of east India using GIS and analytical hierarchical process techniques. CATENA 194:104681. https://doi.org/10.1016/j.catena.2020.104681
  • 38. NABARD-2013–14. https://www.nabard.org/demo/auth/writereaddata/tender/2110160649PLP%202016-2017%20Surat.split-and-merged.pdf) (30/06/2021, 11:46 AM)
  • 39. Nithya CN, Srinivas Y, Magesh NS, Kaliraj S (2019) Assessment of groundwater potential zones in Chittar basin, Southern India using GIS based AHP technique. Remote Sens Appl Soc Environ 15:100248. https://doi.org/10.1016/j.rsase.2019.100248
  • 40. Ozdemir A (2011) Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). J Hydrol 405(1–2):123–136. https://doi.org/10.1016/j.jhydrol.2011.05.015
  • 41. Pande CB, Khadri SFR, Moharir KN, Patode RS (2018) Assessment of groundwater potential zonation of Mahesh River basin Akola and Buldhana districts, Maharashtra, India using remote sensing and GIS techniques. Sustain Water Resour Manag 4(4):965–979. https://doi.org/10.1007/s40899-017-0193-5
  • 42. Pandey PK, Das SS (2016) Morphometric analysis of Usri River basin, Chhotanagpur Plateau, India, using remote sensing and GIS. Arab J Geosci 9(3):240
  • 43. Patil S, Lad R (2021) Evaluation of spatio-temporal dynamics of groundwater recharge and locating artificial recharge structures for watershed in Upper Bhima Basin, Pune, India. J Indian Soc Remote Sens. https://doi.org/10.1007/s12524-021-01400-y
  • 44. Patra S, Mishra P, Mahapatra SC (2018) Delineation of groundwater potential zone for sustainable development: a case study from Ganga Alluvial Plain covering Hooghly district of India using remote sensing, geographic information system and analytic hierarchy process. J Clean Prod 172:2485–2502. https://doi.org/10.1016/j.jclepro.2017.11.161
  • 45. Pradhan B (2009) Groundwater potential zonation for basaltic watersheds using satellite remote sensing data and GIS techniques. Central Eur J Geosci 1(1):120–129. https://doi.org/10.2478/v10085-009-0008-5
  • 46. Raju RS, Raju GS, Rajasekhar M (2019) Identification of groundwater potential zones in Mandavi River basin, Andhra Pradesh, India using remote sensing, GIS and MIF techniques. HydroResearch 2:1–11. https://doi.org/10.1016/j.hydres.2019.09.001
  • 47. Rizeei HM, Pradhan B, Saharkhiz MA, Lee S (2019) Groundwater aquifer potential modeling using an ensemble multi-adoptive boosting logistic regression technique. J Hydrol 579:124172. https://doi.org/10.1016/j.jhydrol.2019.124172
  • 48. Shad R, Mesgari MS, Shad A (2009) Predicting air pollution using fuzzy genetic linear membership kriging in GIS. Comput Environ Urban Syst 33(6):472–481. https://doi.org/10.1016/j.compenvurbsys.2009.10.004
  • 49. Shao Z, Huq ME, Cai B, Altan O, Li Y (2020) Integrated remote sensing and GIS approach using Fuzzy-AHP to delineate and identify groundwater potential zones in semi-arid Shanxi Province, China. Environ Model Softw 134:104868. https://doi.org/10.1016/j.envsoft.2020.104868
  • 50. Singha S, Das P, Singha SS (2021) A fuzzy geospatial approach for delineation of groundwater potential zones in Raipur district, India. Groundwater Sustain Develop 12:100529. https://doi.org/10.1016/j.gsd.2020.100529
  • 51. Sinshaw BG, Belete AM, Tefera AK, Dessie AB, Bizuneh BB, Alem HT et al (2021) Prioritization of potential soil erosion susceptibility region Using fuzzy Logic and Analytical Hierarchy process, Upper Blue Nile Basin, Ethiopia. Water-Energy Nexus 4:10–24. https://doi.org/10.1016/j.wen.2021.01.001
  • 52. Statistics, F. A. O (2010) Food and Agriculture organization of the United Nations. Retrieved, 3(13), 2012.
  • 53. Strahler AN, Chow VT (1964) Handbook of applied hydrology. Quantitative geomorphology of drainage basins and channel networks. New York, NY: Mc-Graw Hill Book Company, 39–76.
  • 54. Tadesse TB, Tefera SA (2021) Comparing potential risk of soil erosion using RUSLE and MCDA techniques in Central Ethiopia. Model Earth Syst Environ 7(3):1713–1725
  • 55. Teshome A, Halefom A, Ahmad I, Teshome M (2020) Fuzzy logic techniques and GIS-based delineation of groundwater potential zones: a case study of Anger river basin, Ethiopia. Model Earth Syst Environ. https://doi.org/10.1007/s40808-020-01035-x
  • 56. Thapa R, Gupta S, Haque MI, Kaur H (2020) Application of geospatial modeling in deciphering groundwater recharge site and structures in Paschim Medinipur district, India. Sustain Water Resour Manag 6(5):1–17. https://doi.org/10.1007/s40899-020-00442-3
  • 57. Tiwari A, Ahuja A, Vishwakarma BD, Jain K (2019) Groundwater potential zone (GWPZ) for urban development site suitability analysis in Bhopal, India. J Indian Soc Remote Sens 47(11):1793–1815. https://doi.org/10.1007/s12524-019-01027-0(01
  • 58. UN-Water Annual Report (2007). https://www.unwater.org/publications/un-waterannual-report-2007/
  • 59. Veeraswamy G (2020) Delineation of groundwater potential zones in Sathyavedu area, Chittoor District (Andhra Pradesh), South India, using geospatial technologies. Model Earth Syst Environ 6(2):895–905. https://doi.org/10.1007/s40808-020-00726-9
  • 60. Verma N, Patel RK (2021) Delineation of groundwater potential zones in lower Rihand River Basin, India using geospatial techniques and AHP. Egypt J Remote Sens Space Sci. https://doi.org/10.1016/j.ejrs.2021.03.005
  • 61. Weier J, Herring D (2000) Measuring vegetation (ndvi & evi). NASA Earth Observatory, 20.
  • 62. World population review https://worldpopulationreview.com/world-cities/surat-population (06–07–2021, 10:27 AM)
  • 63. Yeh PJF, Swenson SC, Famiglietti JS, Rodell M (2006) Remote sensing of groundwater storage changes in Illinois using the gravity recovery and climate experiment (GRACE). Water Resour Res. https://doi.org/10.1029/2006WR005374
  • 64. Yeh HF, Cheng YS, Lin HI, Lee CH (2016) Mapping groundwater recharge potential zone using a GIS approach in Hualian River. Taiwan Sustain Environ Res 26(1):33–43. https://doi.org/10.1016/j.serj.2015.09.005
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ce49203b-4155-4d16-a368-70ed8f0170b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.