Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 73, nr 3 | 557--571
Tytuł artykułu

Influence of the radiofrequency applicators arrangement on the sizes of ablative zones inside hepatic tumor

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Radiofrequency (RF) ablation is a popular therapeutic technique for heating solid tumors that are medically unsuitable for resection or other treatments. Thermal ablation applicators create high-frequency electromagnetic fields (EMFs) within the tumor site, which causes heating, coagulation, and ultimately death of the cancer cells. The aim of this study is the numerical analysis of the temperature distributions, ablation zones, and specific absorption rates (SAR) during RF ablation in relation to an ellipsoidal shaped tumor placed in the model of liver tissue. The source of heat is a three-element system of RF needle applicators operating at a frequency 100 kHz, with a given electrode potential, inserted into the tumor. In order to obtain an appropriate temperature distribution in the target area, the Laplace equation coupled with the Pennes equation were solved using the finite element method (FEM). The arrangement effect of three needle-type applicators on the resultant thermal profiles and the volumes of ablation zones were analyzed and compared. In addition, the ablation zones for various angles of the RF applicator placed in the center of the tumor were analyzed. The paper shows that in order to control temperature distribution and ablation zones the proposed system of RF applicators and the arrangement of electrodes can be successfully applied in hepatocellular carcinoma treatment.
Wydawca

Rocznik
Strony
557--571
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr., wz.
Twórcy
autor
  • Department of Electrical and Power Engineering, AGH University of Krakow, 30 Mickiewicza Ave., 30-059 Krakow, Poland, piotr.gas@agh.edu.pl
  • Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, 38A Nadbystrzycka Str., 20-618 Lublin, Poland, a.miaskowski@pollub.pl
Bibliografia
  • [1] Siegel R.L., Miller K.D., Wagle N.S., Jemal A., Cancer statistics, 2023, CA: A Cancer Journal for Clinicians, vol. 73, no. 1, pp. 17–48 (2023), DOI: 10.3322/caac.21763.
  • [2] Abdalla M., Collings A.T., Dirks R. et al., Surgical approach to microwave and radiofrequency liver ablation for hepatocellular carcinoma and colorectal liver metastases less than 5 cm: A systematic review and meta-analysis, Surgical Endoscopy, vol. 37, no. 5, pp. 3340–3353 (2023), DOI: 10.1007/s00464-022-09815-5.
  • [3] Miaskowski A., Gas P., Numerical Estimation of SAR and Temperature Distributions inside Differently Shaped Female Breast Tumors during Radio-Frequency Ablation, Materials, vol. 16, iss. 1, no. 223 (2023), DOI: 10.3390/ma16010223.
  • [4] Gas P., Modelling the temperature-dependent RF ablation produced by the multi-tine electrode, Przegląd Elektrotechniczny, vol. 96, no. 1, pp. 48–51 (2020), DOI: 10.15199/48.2020.01.12.
  • [5] Morega A., Morega M., Dobre A., Hyperthermia and Ablation, Computational Modeling in Biomedical Engineering and Medical Physics, pp. 249–294 (2021), DOI: 10.1016/B978-0-12-817897-3.00008-7.
  • [6] Gas P., Kurgan E., Evaluation of thermal damage of hepatic tissue during thermotherapy based on the Arrhenius model, 2018 Progress in Applied Electrical Engineering (PAEE), IEEE Xplore, pp. 1–4 (2018), DOI: 10.1109/PAEE.2018.8441065.
  • [7] Radmilovic-Radjenovic M., Boskovic N., Radjenovic B., Computational Modeling of Microwave Tumor Ablation, Bioengineering, vol. 9, iss. 11, no. 656 (2022), DOI: 10.3390/bioengineering9110656.
  • [8] Paruch M., Turchan Ł., Mathematical modelling of the destruction degree of cancer under the influence of a RF hyperthermia, AIP Conference Proceedings, vol. 1922, iss. 1, no. 060003 (2018), DOI: 10.1063/1.5019064.
  • [9] Taton G., Rok T., Rokita E., Temperature distribution assessment during radiofrequency ablation, 4th European Conference of the International Federation for Medical and Biological Engineering, IFMBE Proceedings, vol. 22, pp. 2672–2676 (2009), DOI: 10.1007/978-3-540-89208-3_641.
  • [10] Wu C., Huang H., Chen L., Yu S., Moser M.A., Zhang W., Fang Z., Zhang B., Optimal design of aperiodic tri-slot antennas for the conformal ablation of liver tumors using an experimentally validated MWA computer model, Computer Methods and Programs in Biomedicine, vol. 242, no. 107799 (2023), DOI: 10.1016/j.cmpb.2023.107799.
  • [11] Gas P., Miaskowski A., Subramanian M., In silico study on tumor-size-dependent thermal profiles inside an anthropomorphic female breast phantom subjected to multi-dipole antenna array, International Journal of Molecular Sciences, vol. 21, iss. 22, no. 8597 (2020), DOI: 10.3390/ijms21228597.
  • [12] Singla A., Marwaha A., Marwaha S., Multi-criterion optimization of invasive antenna applicators for Au@ Fe3O4, Au@-Fe2O3 and Au@-Fe2O3 mediated microwave ablation treatment, Electromagnetic Biology and Medicine, vol. 42, no. 1, pp. 21–40 (2023), DOI: 10.1080/15368378.2023.2184381.
  • [13] Avishek S., Samantaray S., Effect of Power and Frequency on Microwave Ablation on Lungs, 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN), IEEE Xplore, pp. 26–30 (2021), DOI: 10.1109/SPIN52536.2021.9566023.
  • [14] Piccioni F., Poli A., Templeton L.C. et al., Anesthesia for percutaneous radiofrequency tumor ablation (PRFA): A review of current practice and techniques, Local and Regional Anesthesia, vol. 12, pp. 127–137 (2019), DOI: 10.2147/LRA.S185765.
  • [15] Li J. et al., A practical pretreatment planning method of multiple puncturing for thermal ablation surgery, Biocybernetics and Biomedical Engineering, vol. 40, no. 4, pp. 1469–1485 (2020), DOI: 10.1016/j.bbe.2020.08.004.
  • [16] Satish V., Repaka R., Microwave Ablation Trocar Operated at Dual Tine Dual-Frequency: A Numerical Analysis, Journal of Engineering and Science in Medical Diagnostics and Therapy, vol. 6, iss. 2, no. 021002 (2023), DOI: 10.1115/1.4056410.
  • [17] Fatigate G.R., Neves R.F.C., Lobosco M., Reis R.F., Tissue Damage Control Algorithm for Hyperthermia Based Cancer Treatments, Lecture Notes in Computer Science, vol. 13351 pp. 514–525 (2022), DOI: 10.1007/978-3-031-08754-7_57.
  • [18] Wang J., Huang S., Gao H., Liu J., Zhang Y., Wu S., Computer Simulations of Dual-Antenna Microwave Ablation and Comparison to Experimental Measurements, Applied Sciences, vol. 13, iss. 1, no. 26 (2022), DOI: 10.3390/app13010026.
  • [19] Parhar D., Baum R.A., Spouge R. et al., Hepatic Hilar Nerve Block for Adjunctive Analgesia during Percutaneous Thermal Ablation of Hepatic Tumors: A Retrospective Analysis, Journal of Vascular and Interventional Radiology, vol. 34, no. 3, pp. 370–377 (2023), DOI: 10.1016/j.jvir.2022.11.028.
  • [20] Gas P., Optimization of multi-slot coaxial antennas for microwave thermotherapy based on the S11- parameter analysis, Biocybernetics and biomedical engineering, vol. 37, no. 1, pp. 78–93 (2017), DOI: 10.1016/j.bbe.2016.10.001.
  • [21] Kernot D., Yang J., Williams N., Thomas T., Ledger P., Arora H., van Loon R., Transient changes during microwave ablation simulation: A comparative shape analysis, Biomechanics and Modeling in Mechanobiology, vol. 22, no. 1, pp. 271–280 (2023), DOI: 10.1007/s10237-022-01646-6.
  • [22] Xu Y., Moser M.A., Zhang E., Zhang W., Zhang B., Large and round ablation zones with microwave ablation: A preliminary study of an optimal aperiodic tri-slot coaxial antenna with the π-matching network section, International Journal of Thermal Sciences, vol. 140, pp. 539–548 (2019), DOI: 10.1016/j.ijthermalsci.2019.03.022.
  • [23] Avishek S., Samantaray S., A study on the selection of electrode materials for hepatic radiofrequency ablation: A numerical approach, Materials Today: Proceedings, vol. 74, pp. 974–979 (2023), DOI: 10.1016/j.matpr.2022.11.348.
  • [24] Tang Y., Zou J., Flesch R.C., Jin T., Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia, Chinese Physics B, vol. 32, iss. 3, no. 034304 (2023), DOI: 1088/1674-1056/ac744c.
  • [25] Tang Y., Su H., Flesch R.C., Jin T., An optimization method for magnetic hyperthermia considering Nelder–Mead algorithm, Journal of Magnetism and Magnetic Materials, vol. 545, no. 168730 (2022), DOI: 10.1016/j.jmmm.2021.168730.
  • [26] Biswas C., Nasrin R., Ahmad M.S., Numerical analogy of bioheat transfer and microwave cancer therapy for liver tissue, Heat Transfer, vol. 51, no. 7, pp. 6403–6430 (2022), DOI: 10.1002/htj.22597.
  • [27] Chaichanyut W., Chaichanyut M., Finite Element Analysis on Porous Media: Geometric Monopole Antenna Shapes Affect Liver Tumor Microwave Ablation, Proceedings of the 5th International Conference on Medical and Health Informatics, pp. 73–77 (2021), DOI: 10.1145/3472813.3472827.
  • [28] Nantivatana P., Phasukkit P., Tungjitkusolmun S., Chayakulkheeree K., Optimal antenna slot design for hepatocellular carcinoma microwave ablation using multi-objective fuzzy decision making, International Journal of Intelligent Engineering and Systems, vol. 13, no. 5, pp. 38–50 (2020), DOI: 10.22266/ijies2020.1031.05.
  • [29] Perez J.I.L., Varon L.A.B., Estimating the Electrical Conductivity of Human Tissue in Radiofrequency Hyperthermia Therapy, Ingenieria e Investigacion, vol. 43, no. 1, e92288 (2023), DOI: 10.15446/ing.investig.92288.
  • [30] Lopez J.I., Bermeo L.A., Parametric study of thermal damage in the hyperthermia treatment by radiofrequency, 2021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering (CI-IB&BI), IEEE Xplore, pp. 1–4 (2021), DOI: 10.1109/CI-IBBI54220.2021.9626117.
  • [31] Ferreira L.F.S., Bermeo Varon L.A., Orlande H.R.B., Lamien B., Design Under Uncertainties of the Thermal Ablation Treatment of Skin Cancer, ASME Journal of Heat and Mass Transfer, vol. 145, iss. 3, no. 031202 (2023), DOI: 10.1115/1.4055821.
  • [32] Kalogeropoulos A., Tsitsas N.L., Electromagnetic interactions of dipole distributions with a stratified medium: power fluxes and scattering cross sections, Studies in Applied Mathematics, vol. 148, no. 3, pp. 1040–1068 (2022), DOI: 10.1111/sapm.12469.
  • [33] Szczech M., Experimental study on the leak mechanism of the ferrofluid seal in a water environment, IEEE Transactions on Magnetics, vol. 57, no. 9, pp. 1–10 (2021), DOI: 10.1109/TMAG.2021.3096210.
  • [34] Yang C.Q., Lu M., Safety evaluation for a high signal operator with electric field exposure induced by contact wires, Archives of Electrical Engineering, vol. 70, no. 2, pp. 431–444 (2021), DOI: 10.24425/aee.2021.136994.
  • [35] Wahyudi S., Vardiansyah N.R., Setyorini P.H., Effect of Blood Perfusion on Temperature Distribution in the Multilayer of the Human Body with Interstitial Hyperthermia Treatment for Tumour Therapy, CFD Letters, vol. 14, no. 6, pp. 102–114 (2022), DOI: 10.37934/cfdl.14.6.102114.
  • [36] Garcia E.P., Rubio M.F.J.C., Lopez G.D.G., Felix K.S., Jaquez J.I.H., Chavez S.I.V., Garcia F.F., In Silico Coaxial Antenna Design Applicator Optimization for Microwave Ablation Therapy in Medium Adipose Tissue Density Breast with Ductal Carcinoma In-Situ, IFMBE Proceedings, vol. 96, pp. 41–49 (2024), DOI: 10.1007/978-3-031-46933-6_5.
  • [37] Suleman M., Riaz S., Computational modeling of poroelastic brain tumor therapy during heat transfer carrying temperature-dependent blood perfusion, Medical Engineering & Physics, vol. 103, no. 103792 (2022), DOI: 10.1016/j.medengphy.2022.103792.
  • [38] Vineeth A.J., Ramaswamy A., Ramamurthy S., SAR analysis of radiations from a three element dipole array antenna on spherical muscle tissue in comparison with two element dipole array antenna, AIP Conference Proceedings, vol. 2822, no. 020170 (2023), DOI: 10.1063/5.0179848.
  • [39] Serrano-Díaz D.G., Gomez-Flores W., Vera A., Leija L., Towards Breast Cancer Treatment Planning by Microwave Ablation via Tumor Characterization Using Medoid-based Eigenvectors, 2023 20th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), IEEE Xplore, pp. 1–6 (2023), DOI: 10.1109/CCE60043.2023.10332822.
  • [40] Karthik V.U., Hoole S.R.H., Hyperthermia Treatment Planning Using Shape Optimization, 2023 International Conference on Electromagnetics in Advanced Applications (ICEAA), IEEE Xplore, pp. 32–36 (2023), DOI: 10.1109/ICEAA57318.2023.10297626.
  • [41] Lobato F.S., Alamy Filho J.E., Libotte G.B., Platt G.M., Optimizing Breast Cancer Treatment Using Hyperthermia: a Single and Multi-Objective Optimal Control Approach, Applied Mathematical Modelling, vol. 127, pp. 96–118 (2024), DOI: 10.1016/j.apm.2023.11.022.
  • [42] Pennes H.H., Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm, Journal of Applied Physiology, vol. 85, no. 1, pp. 5–34 (1998), DOI: 10.1152/jappl.1998.85.1.5.
  • [43] Michalowska J., Wac-Wlodarczyk A., Koziel J., Monitoring of the specific absorption rate in terms of electromagnetic hazards, Journal of Ecological Engineering, vol. 21, no. 1, pp. 224–230 (2020), DOI: 12911/22998993/112878.
  • [44] Hasgall P.A., Di Gennaro F., Baumgartner C., Neufeld E., Lloyd B., Gosselin M.C., Payne D., Klingenbock A., Kuster N., IT’IS Database for Thermal and Electromagnetic Parameters of Biological Tissues, Version 4.1 (2022), DOI: 10.13099/VIP21000-04-1.
  • [45] Sim4Life Manual, version 6.2, Zurich MedTech AG, Zurich, Switzerland (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ce4912ff-d810-49d0-86a4-0c37cc915990
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.