Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 22, nr 3(73) | 14--22
Tytuł artykułu

Effect of chemical composition of boriding agent on the optimization of surface hardness and layer thickness on AISI 8620 steel by solid and liquid boriding processes

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Surfaces of cam shafts made of AISI 8620 steels were hardened by boriding processes in both solid and liquid mediums. Various chemical agents were used to achieve boride layers on the surfaces of the cam shafts in these processes. It was aimed to examine effects of the chemical agents on microhardness and thickness of the boride layers obtained. It was concluded that a bath composition of 5% B4C-90% SiC-5% KBF4 was appropriate for the hardest and thickest boride layer achieved in the solid medium, and a composition of 70% Na2B4O7-30% B4C in the liquid medium.
Wydawca

Rocznik
Strony
14--22
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Metallurgical and Materials Engineering, Sivas University of Science and Technology, 58000, Sivas, Turkey
  • Department of Aeronautical Engineering, Sivas University of Science and Technology, 58000, Sivas, Turkey, yyilmaz@sivas.edu.tr
  • Department of Metallurgical and Materials Engineering, Sivas Cumhuriyet University, 58000, Sivas, Turkey
  • Department of Metallurgical and Materials Engineering, İskenderun Technical University, 31200, İskenderun, Turkey
Bibliografia
  • 1. S. Roy, S. Sundararajan, The effect of heat treatment routes on the retained austenite and Tribomechanical properties of carburized AISI 8620 steel, Surf. Coat. Technol. 308 (2016) 236–243. https://doi.org/10.1016/j.surfcoat.2016.06.095.
  • 2. E. Duru, F. Doğan, M. Uysal, H. Akbulut, S. Aslan, Fabrication and characterization of graphene oxide reinforced NiB composite coating by pulsed electrodeposition technique, Diam. Relat. Mater. 120 (2021) 108688. https://doi.org/10.1016/j.diamond.2021.108688.
  • 3. S. Aslan, E. Duru, Microstructure and Wear Properties of Electrodeposited Ni-B-Al2O3 Composite Coating on Low Carbon Steel at Elevated Temperature, J. Mater. Eng. Perform. (2021). https://doi.org/10.1007/s11665-021-06290-2.
  • 4. F. Doğan, E. Duru, M. Uysal, H. Akbulut, S. Aslan, Tribology Study of Pulse Electrodeposited Ni-B-SWCNT Composite Coating, JOM. 74 (2022) 574–583. https://doi.org/10.1007/s11837-021-05070-6.
  • 5. Ş. Ürdem, E. Duru, H. Algül, M. Uysal, H. Akbulut, Evaluation of high temperature tribological behavior of electroless deposited NiB–Al2O3 coating, Wear. 482–483 (2021) 203960. https://doi.org/10.1016/j.wear.2021.203960.
  • 6. G. Singh, P. Jasbir, S. Ratol, B.S. Bhullar, Investigate wear resistance of TiAl2O3 coating by detonation gun process on AISI 8620, Int. J. Emerg. Technol. 4 (2013) 123-131.
  • 7. A. Motallebzadeh, E. Dilektasli, M. Baydogan, E. Atar, Evaluation of the effect of boride layer structure on the high temperature wear behavior of borided steels, Wear. 328–329 (2015) 110–114. https://doi.org/10.1016/j.wear.2015.01.029.
  • 8. M.S. Gök, Y. Küçük, A. Erdoğan, M. Öge, E. Kanca, A. Günen, Dry sliding wear behavior of borided hot-work tool steel at elevated temperatures, Surf. Coatings Technol. 328 (2017) 54–62. https://doi.org/10.1016/j.surfcoat.2017.08.008.
  • 9. T. Balusamy, T.S.N.S. Narayanan, K. Ravichandran, I. Song, M. Ho, Pack boronizing of AISI H11 tool steel : Role of surface mechanical attrition treatment, Vaccum. 97 (2013) 36–43. https://doi.org/10.1016/j.vacuum.2013.04.006.
  • 10. E. Duru, F. Doğan, M. Uysal, H. Akbulut, S. Aslan, Optimization of Ni-B coating bath and effect of DMAB concentration on hardness and wear, Surf. Interfaces. 22 (2021) 100880. https://doi.org/10.1016/j.surfin.2020.100880.
  • 11. A. Persson, J. Bergstrom, B. Christer, S. Hogmark, Thermal fatigue cracking of surface engineered hot work tool steels, Surf. Coat. Technol. 191 (2005) 216–227. https://doi.org/10.1016/j.surfcoat.2004.04.053.
  • 12. A. Persson, S. Hogmark, J. Bergstrom, Influence of deposition temperature and time during PVD coating of CrN on corrosive wear in liquid aluminium, Surf. Coat. Technol. 147 (2001) 42–47. https://doi.org/https://doi.org/10.1016/S0257-8972(01)01366-4.
  • 13. I. Gunes, S. Ulker, S. Taktak, Plasma paste boronizing of AISI 8620, 52100 and 440C steels, Mater. Des. 32 (2011) 2380–2386. https://doi.org/10.1016/j.matdes.2010.11.031.
  • 14. B. Aktaş, M. Toprak, A. Çalık, A. Tekgüler, Effect of pack-boriding on the tribological behavior of Hardox 450 and HiTuf Steels, Rev. Adv. Mater. Sci. 59 (2020) 314–321.
  • 15. M. Tabur, M. Izciler, F. Gul, I. Karacan, Abrasive wear behavior of boronized AISI 8620 steel, Wear. 266 (2009) 1106–1112. https://doi.org/10.1016/j.wear.2009.03.006.
  • 16. C. Martini, G. Palombarini, G. Poli, D. Prandstraller, Sliding and abrasive wear behaviour of boride coatings, Wear. 256 (2004) 608–613. https://doi.org/10.1016/j.wear.2003.10.003.
  • 17. M. Keddam, M. Kulka, Analysis of the growth kinetics of Fe2B layers by the integral method, J. Min. Metall. Sect. B Metall. 54 (2018) 361–367. https://doi.org/10.2298/JMMB180405026K.
  • 18. C. Meric, S. Sahin, B. Backir, N.S. Koksal, Materials & Design Investigation of the boronizing effect on the abrasive wear behavior in cast irons, Mater. Des. 27 (2006) 751–757. https://doi.org/10.1016/j.matdes.2005.01.018.
  • 19. Ş. Şen, İ. Özbek, U. Şen, C. Bindal, Mechanical behavior of borides formed on borided cold work tool steel, Surf. Coat. Technol. 135 (2001) 2–6. https://doi.org/https://doi.org/10.1016/S0257-8972(00)01064-1.
  • 20. M. Kulka, N. Makuch, A. Pertek, A. Piasecki, An alternative method of gas boriding applied to the formation of borocarburized layer, Mater. Charact. 72 (2012) 59–67. https://doi.org/10.1016/j.matchar.2012.07.009.
  • 21. M. Kul, K.O. Oskay, A. Temizkan, B. Karaca, L.C. Kumruoğlu, B. Topçu, Effect of boronizing composition on boride layer of boronized GGG-60 ductile cast iron, Vacuum. 126 (2016) 80–83. https://doi.org/10.1016/j.vacuum.2016.01.021.
  • 22. E.D.R. Cardenas, E. E. V, Lewis R, Perez, A. I. M, Ponce, J. L. B, Pinal, F. J. P, Dominguez, M. O, Arreola, Characterization and wear performance of boride phases over tool steel substrates, Adv. Mech. Eng. 8 (2016) 1–10. https://doi.org/10.1177/1687814016630257.
  • 23. A. Günen, K.M. Döleker, M.E. Korkmaz, M.S. Gök, A. Erdogan, Characteristics, high temperature wear and oxidation behavior of boride layer grown on nimonic 80A Ni-based superalloy, Surf. Coat. Technol. 409 (2021). https://doi.org/10.1016/j.surfcoat.2021.126906.
  • 24. R. Carrera-Espinoza, U. Figueroa-López, J. Martínez-Trinidad, I. Campos-Silva, E. Hernández-Sánchez, A. Motallebzadeh, Tribological behavior of borided AISI 1018 steel under linear reciprocating sliding conditions, Wear. 362–363 (2016) 1–7. https://doi.org/10.1016/j.wear.2016.05.003.
  • 25. M. Kulka: Current Trends in Boriding. First Edit, Springer International Publishing, Poznan, 2019. https://doi.org/10.1007/978-3-030-06782-3.
  • 26. O. Allaoui, N. Bouaouadja, G. Saindernan, Characterization of boronized layers on a XC38 steel, Surf. Coat. Technol. 201 (2006) 3475–3482. https://doi.org/10.1016/j.surfcoat.2006.07.238.
  • 27. M. Kul, İ. Danacı, Ş. Gezer, B. Karaca, Effect of boronizing composition on hardness of boronized AISI 1045 steel, Mater. Lett. 279 (2020) 1–4. https://doi.org/10.1016/j.matlet.2020.128510.
  • 28. A.A. Joshi, S.S. Hosmani, Pack-Boronizing of AISI 4140 Steel : Boronizing Mechanism and the Role of Container Design, Mater. Manuf. Process. 6914 (2014) 1062–1072. https://doi.org/10.1080/10426914.2014.921705.
  • 29. I. Uslu, H. Comert, M. Ipek, O. Ozdemir, C. Bindal, Materials & Design Evaluation of borides formed on AISI P20 steel, Mater. Des. 28 (2007) 55–61. https://doi.org/10.1016/j.matdes.2005.06.013.
  • 30. M. Keddam, M. Hudáková, J. Ptačinová, R. Moravčík, P. Gogola, Z. Gabalcová, P. Jurči, Characterization of boronized layers on Vanadis 6 tool steel, Surf. Eng. 34 (2021) 445–454. https://doi.org/10.1080/02670844.2020.1781377.
  • 31. P. Jurči, M. Hudáková, Diffusion Boronizing of H11 Hot Work Tool Steel, J. Mater. Eng. Perform. 20 (2011) 1180–1187. https://doi.org/10.1007/s11665-010-9750-x.
  • 32. A. Calik, A. Duzgun, A.E. Ekinci, S. Karakas, N. Ucar, Comparison of Hardness and Wear Behaviour of Boronized and Carburized AISI 8620 Steels, Acta Phys. Pol. A. 116 (2009) 1029–1032. https://doi.org/10.12693/aphyspola.116.1029.
  • 33. M. Keddam, M. Hudáková, J. Ptačinová, M. Kusy, P. Jurči, Modelling of the Boronizing Kinetics of Vanadis 6 Steel by the Integral Diffusion Model, Prot. Met. Phys. Chem. Surf. 58 (2022) 347–355. https://doi.org/10.1134/S207020512202006X.
  • 34. A. Yapici, S.E. Aydin, V. Koc, E. Kanca, M. Yildiz, Wear Behavior of Borided AISI D2 Steel under Linear Reciprocating Sliding Conditions, Prot. Met. Phys. Chem. Surf. 55 (2019) 341–351. https://doi.org/10.1134/S207020511902028X.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ce4794c5-0390-4d5a-b7ad-bdbaca4a1ee6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.