Warianty tytułu
Języki publikacji
Abstrakty
In this paper, a set-valued iteration regularized semigroup, i.e. a family {Ft}t≥0 of set-valued functions for which Fs+t∘C=Fs∘Ft,F0=C,s,t≥0, will be considered, where C is a set-valued function on a closed convex cone in a Banach space. Under some appropriate conditions the generator of a set-valued regularized concave semigroup is introduced and some of its properties are investigated. Also differentiability of the iteration family {C∘ Ft}t≥0 is discussed.
Czasopismo
Rocznik
Tom
Strony
121--130
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
- Department of Pure Mathematics, Ferdowsi University of Mashhad, International Campus, Iran (Islamic Republic of)
autor
- Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran (Islamic Republic of)
Bibliografia
- [1] J.-P. Aubin and H. Frankowska, Set-Valued Analysis in Control Theory, Kluwer Academic Publishers, Dordrecht, 2000.
- [2] C. Berge, Topological Spaces, Oliver and Boyd, Edinburgh, 1963.
- [3] F. Clarke, A proximal characterization of the reachable set, Systems Control Lett. 27 (1996), 195-197.
- [4] F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Grad. Texts in Math. 178, Springer, New York, 1998.
- [5] E. B. Davies and M. M. H. Pang, The Cauchy problem and a generalization of the Hille-Yosida theorem, Proc. Lond. Math. Soc. (3) 55 (1987), no. 1,181-208.
- [6] R. deLaubenfels, C-semigroups and the Cauchy problem, J. Funct. Anal. Ill (1993), no. 1, 44-61.
- [7] G. A. Edgar, Measure, Topology and Fractal Geometry, Springer, New York, 1990.
- [8] A. Geletu, Introduction to topological spaces and set-valued maps, Lecture notes, (2006).
- [9] M. Hukuhara, Integration des Application mesurables dont ta valeur est un compact convexe, Funkcial. Ekvac. 10 (1967), 205-223.
- [10] G. Kwiecińska, On the intermediate value property of multivalued functions, Real Anal. Exchange 26 (2000/2001), no. 1, 245-260.
- [11] Y.-C. Li and S.-Y. Shaw, N-times integrated C-semigroups and the abstract Cauchy problem, Taiwanese). Math. 1 (1997), no. 1,75-102.
- [12] Y.-C. Li and S.-Y. Shaw, On characterization and perturbation of local C-semigroups, Proc. Amer. Math. Soc. 135 (2007), no. 4,1097-1106.
- [13] S. B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488.
- [14] J. Olko, Concave iteration semigroups of linear set-valued functions, Ann. Polon. Math. 71 (1999), no. 1, 31-38.
- [15] H. Radstrom, An embedding theorem for space of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.
- [16] E. O. Roxin, Reachable zones in autonomous differential systems, Boi Soc. Mat. Mex. (2) 5 (1960), 125-135.
- [17] A. Smajdor, On increasing iteration semigroups of multivalued functions, in: Iteration Theory and Its Functional Equations (Schloss Hofen 1984), Lecture Notes in Math. 1163, Springer, Berlin (1990), 177-182. L
- [18] A. Smajdor, Increasing iteration semigroups of Jensen set-valued functions, Aequationes Math. 56 (1998), 131-142.
- [19] A. Smajdor, On regular multivalued cosine functions, Ann. Math. Sil. 13 (1999), 271-280.
- [20] A. Smajdor, Hukuhara's derivative and concave iteration semigroups of linear set-valued functions, J. Appl. Anal. 8 (2002), 297-305.
- [21] A. Smajdor, On concave iteration semigroups of linear set-valued functions, Aequationes Math. 75 (2008), no. 1-2, 149-162.
- [22] A. Smajdor and W. Smajdor, Concave iteration semigroups of linear continuous s et-valued functions, Cent. Eur. J. Math. 10 (2012), no. 6, 2272-2282.
- [23] W. Smajdor, Superadditive set-valued functions and Banach-Steinhaus theorem, Rad. Mat. 3 (1987), 203-214.
- [24] N. Tanaka and I. Miyadera, Exponentially bounded C-semigroups and integrated semigroups, Tokyo]. Math. 12 (1989), no. 1,99-115.
- [25] N. Tanaka and I. Miyadera, C-semigroups and the abstract Cauchy problem, J. Math. Anal. Appl. 170 (1992), no. 1, 196-206.
- [26] P. R. Wolenski, The exponential formula for the reachable set of a Lipschitz differential inclusion, SIAM J. Control Optim. 28 (1990), no. 5, 1148-1161.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ce3c3941-43c4-468e-bb14-1047a0fe3cb9