Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | R. 78, nr 9 | 525--529
Tytuł artykułu

”Papier z gumy”

Warianty tytułu
EN
“Paper made from rubber”
Języki publikacji
PL
Abstrakty
PL
W pracy zbadano możliwość zabezpieczania papieru za pomocą celulozy bakteryjnej, która z chemicznego punktu widzenia jest czysta chemicznie i obojętna fizjologicznie. Dzięki zastosowaniu powłoki z celulozy bakteryjnej uzyskano całkowitą barierowość względem powietrza. Nowatorskim rozwiązaniem była hodowla celulozy bakteryjnej na pożywce ze zmielonej gumy.
EN
The possibility of paper protection with the use of bacterial cellulose was studied. From the chemical point of view bacterial cellulose is pure and physiologically neutral. Coating from bacterial cellulose has proven the ideal barrier against air. The novelty was the use of ground rubber as a base for bacterial cellulose culture.
Wydawca

Rocznik
Strony
525--529
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
  • Politechnika Łódzka. Wydział Biotechnologii i Nauk o Żywności. Katedra Cukrownictwa i Zarządzania Bezpieczeństwem Żywności, ul. Wólczańska 171/173 90-924 Łódź, tomasz.p.olejnik@p.lodz.pl
  • Politechnika Łódzka. Wydział Biotechnologii i Nauk o Żywności. Instytut Technologii Fermentacji i Mikrobiologii, ul. Wólczańska 171/173 90-924 Łódź, katarzyna.slizewska@p.lodz.pl
Bibliografia
  • [1] Aulin G., Ström G. 2013. “Multilayered Alkyd Resin/Nanocellulose Coatings for Use in Renewable Packaging Solutions with a High Level of Moisture Resistance”. Industrial & Engineering Chemistry Research 52 (7) : 2582-2589. https://doi.org/10.1021/ie301785a.
  • [2] Aydt T.P., Weller C.L. 1991. “Testinlton R.R.: Mechanical and barrier properties of edible corn and heat protein films”. Transactions of the ASAE 34 (1) : 0207. DOI:10.13031/2013.31646.
  • [3] Bandyopadhyay S., Saha N., Brodnjak U.V., Saha P. 2018. “Bacterial cellulose based greener packaging material: a bioadhesive polymeric film”. Mater. Res. Express 5 (11) : 115405.
  • [4] Ben Shalom T., Belsey S., Chasnitsky M. Shoseyov O. 2021. “Cellulose Nanocrystals and Corn Zein Oxygen and Water Vapor Barrier Biocomposite Films”. Nanomaterials 11 (1) : 247. 10.3390/nano11010247.
  • [5] Brännvall E., Annergren G. 2009. “Pulp Characterisation”. [In] Ek M.,Gellerstedt G., Henriksson G. (eds) “Pulping Chemistry and Technology” 429-460. De Gruyter, Berlin, New York. https://doi. org/10.1515/9783110213423.429
  • [6] Coltelli M.-B., Wild F., Bugnicourt E., Cinelli P., Lindner M., Schmid M., Weckel V., Müller K., Rodriguez P., Staebler A., Rodríguez-Turienzo L., Lazzeri A. 2015. “State of the Art in the Development and Properties of Protein-Based Films and Coatings and Their Applicability to Cellulose Based Products: An Extensive Review”. Coatings 6 (1) : 1. https://doi. org/10.3390/coatings6010001.
  • [7] Despond S., Espuche E., Cartier N., Domard A. 2005. “Barrier properties of paper–chitosan and paper–chitosan–carnauba wax films”. Journal of Applied Polymer Science 98 (2) : 704-710. https://doi.org/10.1002/ app.21754.
  • [8] Gällstedt M., Brottman A., Hedenqvist M.S. 2005. “Packaging-related properties of protein- and chitosan-coated paper”. Packaging Technology and Science 18 (4) : 161-170. https://doi.org/10.1002/pts.685.
  • [9] Han J.H., Krochta J.M. 2001. “Physical Properties and Oil Absorption of Whey-Protein-Coated Paper”. Journal of Food Science 66 (2) : 294-299. DOI:10.1111/j.1365-2621.2001.tb11335.x.
  • [10] Hult E.L., Iotti M., Lenes M. 2010. “Efficient approach to high barrier packaging using microfibrillar cellulose and shellac”. Cellulose 17 (3) : 575-586. DOI https://doi.org/10.1007/s10570-010-9408-8.
  • [11] Johansson C., Bras J., Mondragon I., Nechita P., Plackett D., Simon P., Diana Svetec D.G., Sanna Virtanen, Baschetti M.G., Breen C., Aucejo S. 2012. “Renewable fibers and bio-based materials for packaging applications – a review of recent developments”. BioReources 7 (2) : 2506-2552.
  • [12] Khwaldia K., Arab-Tehrany E., Desobry S. 2010. “Biopolymer Coatings on Paper Packaging Materials”. Comprehensive Reviews in Food Science and Food Safety 9 (1) : 82-91. https://doi.org/10.1111/j.1541- 4337.2009.00095.x.
  • [13] Khwaldia K., Linder M., Banon S., Desobry S. 2006. “Effects of Mica, Carnauba Wax, Glycerol, and Sodium Caseinate Concentrations on Water Vapor Barrier and Mechanical Properties of Coated Paper”. Journal of Food Sciences 70 (3) : E192-E197. https://doi. org/10.1111/j.1365-2621.2005.tb07135.x.
  • [14] Klemm D., Heublin B., Fink H.-P., Bohn A. 2005. “Cellulose: Fascinating Biopolymer and Sustainable Raw Material”. Angewandte Chemie International Edition 44 (22) : 3358-3393. https://doi.org/10.1002/ anie.200460587.
  • [15] Kmiotek M., Olejnik T.P., Pietras M. Śliżewska K. 2019. „Warstwowy kompozyt celulozowo-papierniczy oraz sposób wytwarzania kompozytu”. Patent 273035, 8.03.2019.
  • [16] Kopacic S., Walzl A., Zankel A., Leitner E., Bauer W. 2018 .“Alginateand Chitosan as a Functional Barrier for Paper-Based Packaging Materials”. Coatings 8 (7) : 235. https://doi.org/10.3390/coatings8070235.
  • [17] Lan W., He L., Liu Y. 2018. “Preparation and Properties of Sodium Carboxymethyl Cellulose/Sodium Alginate/Chitosan Composite Film”. Coa-tings 8 (8) : 291. DOI:10.3390/coatings8080291.
  • [18] Lavoine N., Desloges I., Khelifi B., Bras J. 2014. “Impact of different coating processes of microfibrillated cellulose on the mechanical and barrier properties of paper”. Journal of Materials Science 49 (7) : 2879-2893. DOI:10.1007/s10853-013-7995-0.
  • [19] Lee K.-Y., Buldum G., Mantalaris A., Bismarck A. 2014. “More Than Meets the Eye in Bacterial Cellulose: Biosynthesis, Bioprocessing, and Applications in Advanced Fiber Composites”. Macromolecular Bioscience 14 (1) 10-32. DOI: 10.1002/mabi.201300298.
  • [20] Lin D., Kuang Y., Chen G., Kuang Q., Wang C., Zhu P., Peng C., Fang Z. 2017. “Enhancing moisture resistance of starch-coated paper by improving the film forming capability of starch film”. Industrial Crops and Products 100, 12-18. https://doi.org/10.1016/j.indcrop.2017.02.013.
  • [21] Lin S.-P., Calvar I.L., Catchmark J.M., Liu J.-R., Demirci A., Cheng K.C. 2013. “Biosynthesis, production and applications of bacterial cellulose”. Cellulose (20) : 2191-2219. https://doi.org/10.1007/s10570-013-9994-3.
  • [22] Lin S.-Y., Krochta J.M. 2003. “Plasticizer Effect on Grease Barrier and Color Properties of Whey-protein Coatings on Paperboard”. Journal of Food Science 68 (1) : 229-233. https://doi.org/10.1111/j.1365-2621.2003. tb14144.x.
  • [23] Nishi K.B., Tuan D.D., Kien L.N. 2004. “Pulp charge determination by different methods: effect of beating/refining”. Colloids and Surfaces A: Physicochemical and Engineering Aspects 236 (1-3) : 39-44. https://doi. org/10.1016/j.colsurfa.2004.01.024.
  • [24] Pascoal Neto C., da Rocha Freire Barros C.S., de Matos Fernandes S.C., Domingues Silvestre A.J., Gandini A. 2011. “Aqueus coating composition for use in surface treatment of cellulosic substrates”. WO 2011012934, 03.02.2011.
  • [25] Ravindra R., Sridhar S., Khan A.A. 1999. “Separation studies of hydrazine from aqueous solutions by pervaporation”. Journal of Polymer Science Part B: Polymer Physics 37 (16) : 1969-1980. https://doi.org/10.1002/ (SICI)1099-0488(19990815)37:16<1969::AID-POLB2>3.0.CO;2-R.
  • [26] Rozporządzenie Ramowe Unii Europejskiej EC 1935/2004.
  • [27] Salas, C., Hubbe, M., Rojas, O.J. 2019. “Nanocellulose Applications in Papermaking”. [In] Fang, Z., Smith, Jr, R., Tian, XF. “Production of Materials from Sustainable Biomass Resources”. Biofuels and Biorefineries 9. Springer, Singapore. https://doi.org/10.1007/978-981-13-3768-0_3.
  • [28] Shankar S., Rhim J.-W. 2018. “Antimicrobial wrapping paper coated with a ternary blend of carbohydrates (alginate, carboxymethyl cellulose, carrageenan) and grapefruit seed extract”. Carbohydrate Polymers 196 92-101. doi: 10.1016/j.carbpol.2018.04.128.
  • [29] Surma-Ślusarska B., Presler S., Danielewicz D. 2008. „Properties of Composites of Unbeaten Birch and Pine Sulphate Pulps with Bacterial Cellulose”. FIBRES & TEXTILES in Eastern Europe B 16 (6(71)) : 127-129.
  • [30] Torres F.G., Arroyo J.J., Troncoso O.P. 2019. “Bacterial cellulose nano-composites: An all-nano type of material”. Materials Science and Engineering: C 98 : 1277-1293. https://doi.org/10.1016/j.msec.2019.01.064.
  • [31] Viana R.M., Sá N.M.S.M., Barros M.O., Borges M. de F., Azeredo H.M.C. 2018. “Nanofibrillated bacterial cellulose and pectin edible films added with fruit purees”. Carbohydrate Polymers 196 : 27-32. https://doi. org/10.1016/j.carbpol.2018.05.017.
  • [32] Yolanda D.S., Dirpan A., Rahman A.N.F., Kamaruddin I., Ainani A.F. 2020. “Determination the best concentration of antimicrobial ingredients with a mixture of paper to create active paper packaging”. [In] IOP Conference Series: Earth and Environmental Science 575 (1) : 012019. IOP Publishing.
  • [33] Zhang Z., Britt I.J., Tung M.A. 2001. “Permeation of oxygen and water vapor through EVOH films as influenced by relative humidity”. Journal of Applied Polymer Science 82 (8) : 1866-1872. https://doi.org/10.1002/ app.2030.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ce391a96-e77b-4572-8d19-430ea91e0ec4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.