Warianty tytułu
Języki publikacji
Abstrakty
Major Depressive Disorder (MDD) is one of the leading causes of disability worldwide. Prediction of response to Selective Serotonin Reuptake Inhibitors (SSRIs) antidepressants in patients with MDD is necessary for preventing side effects of mistreatment. In this study, a deep Transfer Learning (TL) strategy based on powerful pre-trained convolutional neural networks (CNNs) in the big data datasets is developed for classification of Responders and Non-Responders (R/NR) to SSRI antidepressants, using 19-channel Electroencephalography (EEG) signal acquired from 30 MDD patients in the resting state. Multiple time-frequency images are obtained from each EEG channel using Continuous Wavelet Transform (CWT) for feeding into pre-trained CNN models that are VGG16, Xception, DenseNet121, MobileNetV2 and InceptionResNetV2. Our plan is to adapt and fine-tune the weights of networks to the target task with the small-sized dataset. Finally, to improve the recognition performance, an ensemble method based on majority voting of outputs of five mentioned deep TL architectures has been developed. Results indicate that the best performance among basic models achieved by DenseNet121 with accuracy, sensitivity and specificity of 95.74%, 95.56% and 95.64%, respectively. An Ensemble of these basic models created to surpass the accuracy obtained by each individual basic model. Our experiments show that ensemble model can gain accuracy, sensitivity and specificity of 96.55%, 96.01% and 96.95%, respectively. Therefore, proposed ensemble of TL strategy of pre-trained CNN models based on WT images obtained from EEG signal can be used for antidepressants treatment outcome prediction with a high accuracy.
Czasopismo
Rocznik
Tom
Strony
946--959
Opis fizyczny
Bibliogr. 60 poz., rys., tab., wykr.
Twórcy
autor
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
autor
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, shalbaf@sbmu.ac.ir
autor
- Department of Biomedical Engineering, Science and Research Brach, Islamic Azad University, Tehran, Iran
Bibliografia
- [1] Isometsä E. Suicidal behaviour in mood disorders—who, when, and why? Can. J. Psych. 2014;59(3):120–30.
- [2] Mehltretter J, Rollins C, Benrimoh D, Fratila R, Perlman K, Israel S, et al. Analysis of features selected by a deep learning model for differential treatment selection in depression. Front. Artif. Intell. 2020;2. https://doi.org/10.3389/frai.2019.0003110.3389/frai.2019.00031.s001.
- [3] Sinyor M, Schaffer A, Levitt A. The sequenced treatment alternatives to relieve depression (STAR* D) trial: a review. Can. J. Psych. 2010;55(3):126–35.
- [4] Leuchter AF, Cook IA, Hunter AM, Korb AS. A new paradigm for the prediction of antidepressant treatment response. Dialogues Clin. Neurosci. 2009;11:435.
- [5] Perlman K, Benrimoh D, Israel S, Rollins C, Brown E, Tunteng J-F, et al. A systematic meta-review of predictors of antidepressant treatment outcome in major depressive disorder. J. Affect. Disord. 2019;243:503–15.
- [6] Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H, Subha DP. Automated EEG-based screening of depression using deep convolutional neural network. Comput. Methods Programs Biomed. 2018;161:103–13.
- [7] Lebiecka K, Zuchowicz U, Wozniak-Kwasniewska A, Szekely D, Olejarczyk E, David O. Complexity analysis of EEG data in persons with depression subjected to transcranial magnetic stimulation. Front. Physiol. 2018;9:1385.
- [8] Ay B, Yildirim O, Talo M, Baloglu UB, Aydin G, Puthankattil SD, et al. Automated depression detection using deep representation and sequence learning with EEG signals. J.Med. Syst. 2019;43(7). https://doi.org/10.1007/s10916-019-1345-y.
- [9] Radenkovic MC. Machine learning approaches in Detecting the Depression from Resting-state Electroencephalogram (EEG). A Review Study. arXiv preprint arXiv:190311454 2019.
- [10] Liao S-C, Wu C-T, Huang H-C, Cheng W-T, Liu Y-H. Major depression detection from EEG signals using kernel eigenfilter-bank common spatial patterns. Sensors. 2017;17(6):1385. https://doi.org/10.3390/s17061385.
- [11] Afshani F, Shalbaf A, Shalbaf R, Sleigh J. Frontal–temporal functional connectivity of EEG signal by standardized permutation mutual information during anesthesia. Cogn. Neurodyn. 2019;13(6):531–40.
- [12] Mumtaz W, Xia L, Yasin MAM, Ali SSA, Malik AS. A wavelet-based technique to predict treatment outcome for major depressive disorder. PLoS One. 2017;12.
- [13] Khodayari-Rostamabad A, Reilly JP, Hasey GM, de Bruin H, MacCrimmon DJ. A machine learning approach using EEG data to predict response to SSRI treatment for major depressive disorder. Clin. Neurophysiol. 2013;124(10):1975–85.
- [14] Zhdanov A, Atluri S, Wong W, Vaghei Y, Daskalakis ZJ, Blumberger DM, et al. Use of machine learning for predicting escitalopram treatment outcome from electroencephalography recordings in adult patients with depression. JAMA network open. 2020;3(1):e1918377. https://doi.org/10.1001/jamanetworkopen.2019.18377.
- [15] Jaworska N, de la Salle S, Ibrahim M-H, Blier P, Knott V. Leveraging machine learning approaches for predicting antidepressant treatment response using electroencephalography (EEG) and clinical data. Front. Psychiatry 2019;9:768.
- [16] Rajpurkar P, Yang J, Dass N, Vale V, Keller AS, Irvin J, et al. Evaluation of a machine learning model based on pretreatment symptoms and electroencephalographic features to predict outcomes of antidepressant treatment in adults with depression: a prespecified secondary analysis of a randomized clinical trial. JAMA network open. 2020;3(6): e206653. https://doi.org/10.1001/jamanetworkopen.2020.6653.
- [17] van der Vinne N, Vollebregt MA, van Putten MJAM, Arns M. Stability of frontal alpha asymmetry in depressed patients during antidepressant treatment. NeuroImage: Clin. 2019;24:102056. https://doi.org/10.1016/j.nicl.2019.102056.
- [18] van der Vinne N, Vollebregt MA, Rush AJ, Eebes M, van Putten MJAM, Arns M. EEG biomarker informed prescription of antidepressants in MDD: a feasibility trial. Eur. Neuropsychopharmacol. 2021;44:14–22.
- [19] Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, et al. A review of classification algorithms for EEG-based brain-computer interfaces: A 10 year update. J. Neural Eng. 2018;15(3):031005. https://doi.org/10.1088/1741-2552/aab2f2.
- [20] Major TC, Conrad JM. A survey of brain computer interfaces and their applications. IEEE SoutheastCon 2014: Institute of Electrical and Electronics Engineers Inc, 2014.
- [21] Sengupta S, Basak S, Saikia P, Paul S, Tsalavoutis V, Atiah F, et al. A review of deep learning with special emphasis on architectures, applications and recent trends. Knowl.-Based Syst. 2020;194:105596. https://doi.org/10.1016/j.knosys.2020.105596.
- [22] Alshemali B, Kalita J. Improving the reliability of deep neural networks in NLP: A review. Knowl.-Based Syst. 2020;191:105210. https://doi.org/10.1016/j.knosys.2019.105210.
- [23] Zhu H. Big data and artificial intelligence modeling for drug discovery. Ann. Rev. Pharmacol. Toxicol. Appl. Pharmacol. 2020;60(1):573–89.
- [24] Shalbaf A, Shalbaf R, Saffar M, Sleigh J. Monitoring the level of hypnosis using a hierarchical SVM system. J. Clin. Monitor. Comput. 2020;34(2):331–8.
- [25] Saeedi A, Saeedi M, Maghsoudi A, Shalbaf A. Major depressive disorder diagnosis based on effective connectivity in EEG signals: a convolutional neural network and long short-term memory approach. Cogn. Neurodyn. 2021;15(2):239–52.
- [26] Fu Y, Lei Y, Wang T, Curran WJ, Liu T, Yang X. Deep learning in medical image registration: a review. Physics in Medicine. Biol. Philos. 2020;65(20):20TR01. https://doi.org/10.1088/1361-6560/ab843e.
- [27] Cai L, Gao J, Zhao D. A review of the application of deep learning in medical image classification and segmentation. Ann. Transl. Med. 2020;8.
- [28] Merlin Praveena D, Angelin Sarah D, Thomas GS. Deep Learning Techniques for EEG Signal Applications–a Review. IETE Journal of Research. 2020;1–8.
- [29] Craik A, He Y, Contreras-Vidal JL. Deep learning for electroencephalogram (EEG) classification tasks: a review. J. Neural Eng. 2019;16(3):031001. https://doi.org/10.1088/1741-2552/ab0ab5.
- [30] Garg D, Verma GK. Emotion Recognition in Valence-Arousal Space from Multi-channel EEG data and Wavelet based Deep Learning Framework. Procedia Comput. Sci. 2020;171:857–67.
- [31] Shovon TH, Al Nazi Z, Dash S, Hossain MF. Classification of motor imagery eeg signals with multi-input convolutional neural network by augmenting stft. In: 2019 5th International Conference on Advances in Electrical Engineering (ICAEE): IEEE. p. 398–403.
- [32] Mumtaz W, Qayyum A. A deep learning framework for automatic diagnosis of unipolar depression. Int J Med Inform. 2019;132:103983. https://doi.org/10.1016/j.ijmedinf.2019.103983.
- [33] Dang W, Gao Z, Sun X, Li R, Cai Q, Grebogi C. Multilayer brain network combined with deep convolutional neural network for detecting major depressive disorder. Nonlinear Dyn. 2020;102(2):667–77.
- [34] Wan Z, Huang J, Zhang H, Zhou H, Yang J, Zhong N. HybridEEGNet: A convolutional neural network for EEG feature learning and depression discrimination. IEEE Access 2020;8:30332–42.
- [35] Haibo He, Garcia EA. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009;21(9):1263–84.
- [36] Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C. A survey on deep transfer learning. In: International conference on artificial neural networks. Springer; 2018. p. 270–9.
- [37] Zhang B, WangW, Xiao Y, Xiao S, Chen S, Chen S, et al. Cross-subject seizure detection in EEGs using deep transfer learning. Comput. Math. Methods Med. 2020;2020:1–8.
- [38] Cimtay Y, Ekmekcioglu E. Investigating the use of pretrained convolutional neural network on cross-subject and cross-dataset EEG emotion recognition. Sensors. 2020;20(7):2034. https://doi.org/10.3390/s20072034.
- [39] Shalbaf A, Bagherzadeh S, Maghsoudi A. Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals. Phys. Eng. Sci. Med. 2020:1–11.
- [40] Raghu S, Sriraam N, Temel Y, Rao SV, Kubben PL. EEG based multi-class seizure type classification using convolutional neural network and transfer learning. Neural Netw. 2020;124:202–12.
- [41] Macher J-P, Crocq M-A. Treatment goals: response and nonresponse. Dialogues Clin Neurosci. 2004;6:83.
- [42] Nierenberg AA, DeCecco LM. Definitions of antidepressant treatment response, remission, nonresponse, partial response, and other relevant outcomes: a focus on treatment-resistant depression. J. Clin. Psych. 2001;62:5–9.
- [43] Mahato S, Goyal N, Ram D, Paul S. Detection of depression and scaling of severity using six channel EEG data. J. Med. Syst. 2020;44:1–12.
- [44] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. Very Deep Convolutional Networks for Large-scale Image Recognition. 2014.
- [45] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition2015. p. 1-9.
- [46] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition2016. p. 770-8.
- [47] Khan A, Sohail A, Zahoora U, Qureshi AS. A survey of the recent architectures of deep convolutional neural networks. arXiv preprint arXiv:190106032. 2019.
- [48] Chollet F. Xception: Deep learning with depthwise separable convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition2017. p. 1251-8.
- [49] Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition2017. p. 4700-8.
- [50] Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:04861. 2017.
- [51] Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. Mobilenetv2: Inverted residuals and linear bottlenecks. Proceedings of the IEEE conference on computer vision and pattern recognition2018. p. 4510-20.
- [52] Boyce P, Hopwood M, Morris G, Hamilton A, Bassett D, Baune BT, et al. Switching antidepressants in the treatment of major depression: When, how and what to switch to? J. Affect. Disord. 2020;261:160–3.
- [53] Rafeyan R, Papakostas GI, Jackson WC, Trivedi MH. Inadequate response to treatment in major depressive disorder: augmentation and adjunctive strategies. J. Clin. Psych. 2020;81(3). https://doi.org/10.4088/JCP.OT19037BR3.
- [54] Sun S, Zhang C, Zhang D. An experimental evaluation of ensemble methods for EEG signal classification. Pattern Recogn. Lett. 2007;28(15):2157–63.
- [55] Srivastava K, Prakash J, Shashikumar R, Ryali VSSR, Bhat PS, Khan S. Neuropsychophysiological correlates of depression. Industrial psychiatry journal. 2010;19(2):82. https://doi.org/10.4103/0972-6748.90336.
- [56] Pei C, Sun Y, Zhu J, Wang X, Zhang Y, Zhang S, et al. Ensemble Learning for early-response prediction of antidepressant treatment in major depressive disorder. J. Magn. Reson. Imaging 2020;52(1):161–71.
- [57] Widge AS, Bilge MT, Montana R, Chang W, Rodriguez CI, Deckersbach T, et al. Electroencephalographic biomarkers for treatment response prediction in major depressive illness: a meta-analysis. Am. J. Psychiatry 2019;176(1):44–56.
- [58] Marcot BG, Hanea AM. What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis? Comput. Statistics 2020;1–23.
- [59] Kornblith S, Shlens J, Le QV. Do better imagenet models transfer better? Proceedings of the IEEE conference on computer vision and pattern recognition2019. p. 2661-71.
- [60] van der Vinne N, Vollebregt MA, Boutros NN, Fallahpour K, van Putten MJAM, Arns M. Normalization of EEG in depression after antidepressant treatment with sertraline? A preliminary report. J. Affect Disord. 2019;259:67–72.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ce1b07a4-8ec3-49e8-b9d6-d6430b3f9894