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ABSTRACT 

This work investigates kinetics, dynamics and energy of solid on the example of a tool fixed 

flexibly under the process of cutting. The original approach to the tool kinetics was considered by the 

Authors earlier. This work consists with three parts referred to the kinetics, dynamics, and energy of 

solid. Present work is concerned on the development of kinetics problems of a solid represented by a 

tool fixed flexibly and is a continuation of the problem. Part 1 covers the definition and characteristics 

of the machining space-time and is referred generally to the kinetics. Then the kinetic and dynamic 

magnitudes characterizing tool in the space-time are described. The set of these magnitudes has been 

extended by introducing the properly understood impulse and time-effect. Part 2 of the work is to 

consider the dynamics of tool in the machining space-time. In Part 3, types of works in the machining 

space-time and energy of the tool fixed flexibly will be considered; the focus is to be put on an 

essential difference between work and energy.   
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1.  INTRODUCTION 

 

For the introduction, the Authors’ work [1] is referred to, concerning an adequate 

approach to cutting by the tool fixed flexibly. That paper was focused on the kinetics only so 

the development of the work seems to be a natural need. This work is aiming at the 

consecutive parts of physical characteristics, such as kinetics, dynamics and energy of the 

tool. The next step would be characteristics of the system with a cutter fixed together with an 

elastic element to present a complexity of the problem. Therefore the description of dynamic 

behaviour of the tool with the state energetic characteristics is to be also presented. 

 The presented in [1] kinetics of the tool fixed flexibly covers first two links, that is 

velocity and acceleration. Now the third kinetic link, that is jerk as the derivative of 

acceleration with respect to time, is to be considered. That will allow to extend description of 
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the tool dynamics. By regarding the tool mass one may obtain consecutive, a properly 

understood magnitude, being the time-effect. 

 Therefore the velocity, acceleration, and jerk – all they will be multiplied by the solid/ 

tool mass to obtain impetus, force of inertia, and time-effect/spur-of-the-moment. It is worth 

noting that the considered magnitudes will be determined quantitatively both analytically and 

graphically, whereas their units will be resulting from the units of three basic magnitudes, 

which are the mass, length, and time. Their units are kilogram (kg), meter (m), and second (s), 

respectively. 

 Naturally, in the vertical direction of the machining system, there are actions with the 

measures of other forces, namely repel (repulse or rebuff), and gravity [2,3]. These forces will 

be also determined. 

 In this place it is worth defining the notion of the machining system. One should notify 

that the two elements are the tool and machined material. They are a part of the whole 

technological system, namely the machine tool     fixture chuck     workpiece     tool [1,4].  

To clarify the notion of vertical direction of the  machining system one should assume 

that each machining system is characteristic with the following directions: vertical and two 

horizontal. These directions, in turn, are characteristic with the coordinate system which is 

surely connected with the machining system to allow a description of the magnitudes 

characterizing the machining process. The most characteristic direction of the considered 

system is vertical direction. 

 A closer explanation of the time-effect notion will be provided in the context of tool 

dynamics. The same explanation of the inertia notion, referred to the flexibly fixed cutter, will 

be also given. Stored energy of the tool will be provided on the basis of energy notion, the 

properly understood mechanical energy of a solid/material body. An important task is to 

provide descriptions of the phenomena on adequately defined fundamental notions. 

Taking advantage of the present knowledge, concerned with the dynamics of solid, one 

may describe the dynamic behavior of the tool fixed flexibly but this description would not be 

adequate. It results from using the methodic tool which is a d’Alembert’s rule [5]. It is known 

that in the structure of that rule there is a fictional component, being the fictional inertia force. 

Therefore a new method of solving the dynamics of the considered solid is needed, with 

the solid being cutting tool fixed flexibly. The source now will be not the equation of 

equilibrium of forces (fictional and real ones) but the equation of the path length of the tool 

edge. 

To clarify more strictly the title word referred to the way of a solid/tool fixation (fixed 

flexibly) one should state that such a manner of its attachment/fixation is characteristic with a 

possible deflection of tool (and the tool edge together) against a nominal path of cutting which 

is the horizontal straight line.   

 

 

2.  CHARACTERISTICS OF THE (MACHINING) SPACE-TIME 

 

The work covers dynamics and stored energy of the solid/tool fixed flexibly which 

moves (with one-side free motion)  upward due to a repel action of the machined material. In 

this direction (vertical direction) the kinetics referred to the tool will be considered. 

One should stress again that the tool itself is moving upward with the motion of a free 

character that is the free motion in vertical direction, the motion not dumped by any material 

external stimulus. (Naturally, the air resistance, left out of account as small, has been omitted 

in these considerations). 
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The nature of repel action of the machined material is such that it repels the tool 

upward. Of course, the tool behaves reversely, that is it press against the material. The 

behaviour of both cooperating elements of the machining system is in agreement with the 

commonly recognized third Newton’s law [6]. 

It is worth explaining that the second element of the machining system, which is the 

workpiece, cannot be characterized by magnitudes connected with dynamics. That workpiece 

does not move with a variable motion which – including the workpiece mass – gives evidence 

of dynamics of that element. One may speak of kinematics of the workpiece. 

The considered machining system, described in detail in [1], consists of edge fixed 

articulatedly supported tool, as well as the workpiece having the shape of obliquely truncated 

prism of rectangular basis, and in the longitudinal cross-section – isosceles trapezoid (Fig. 1). 

The edge 1 is loaded gravitationally by means of weight 2, whereas the wedge-shaped 

workpiece 3 is fixed by the chuck 4, settled in turn on the machine tool table. The workpiece 

travels with the velocity mv , acting/pressing against the tool edge with its oblique plane. The 

first butt/contact of the workpiece with the tool edge will follow in a determined point of zero 

line 0-0. 

 

 
 

Fig. 1. Structural scheme of a machining system: 1 – edge, 2 – weight, 3 – workpiece, 4 – chuck [1]. 

 

 

 Further development of the subject requires explanation of the machining space-time 

notion, with the space-time itself at the beginning. According to [7] the space-time is a 

mathematical composition arisen from the junction of one-dimension time and three-

dimension space into one four-dimension stretch/reach. The work [8] relates that the junction 

of time and space has been called the space-time. In [9] the space-time is called four-

dimension stretch originated as the junction of time and space. The encyclopaedia [10] 

provides the following definition of the space-time: set of all events; the event is placed in the 

space-time by providing four coordinates: time and three coordinates determining the position 

in space.  

As it results from the examples of general definitions of space-time, it is characterized 

by space, time, and one or more events. However, none of those definitions specifies the 
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limits of this composition, though the limits are an important element of determined 

characteristics of the space-time. They decide of the overall dimensions. The placement of 

these limits refers to determined energetic states of the solid/material body which penetrates 

the space-time with a variable motion. The event or phenomenon occurring there, on the 

limits of space-time (here: on the limits situated horizontally) changes its nature, assuming the 

energetic or state nature. On the horizontal direction, the space-time limits are determined by 

vertical kinematic potential fields in the extreme points of the second kinetic zone, being the 

second fragment of the whole machining zone. It will be closer explained in the paper.  

 Thus the notion of machining space-time has been introduced for the considered 

technological system. This adjectival determination indicates the material machining takes 

place in this space-time, meaning a special event occurrence. This event is accompanied by 

the phenomenon of variable motion, because the solid/tool moves with such a motion during 

the material machining. 

 Characteristics of the machining space-time is presented on the background of 

geometric characteristics of track/trajectory of tool edge within the machined workpiece (Fig. 

2). That last characteristics covers two kinetic zones marked by Roman digits I, II. These 

zones (marked the same) correspond with consecutive fragments of the whole machining 

zone. In each of them the configuration of edge trajectory is completely different, resulting 

from its differentiated kinetics. In the first zone (between points 0 and 1), the edge moves on 

horizontal line, not changing its primary track. On the length of second zone (between points 

1 and 2), the edge track declines upward and rises exponentially and progressively which is 

reflected by the retarded vertical motion of the edge.  

 

 
 

Fig. 2. Geometric characteristics of track/trajectory of edge within the machined workpiece. 
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 These two fragments of the whole machining zone may be called as follows: I – in-cut 

zone, II – repel zone. The machining space-time (dotted area) is a four-dimension stretch, 

placed between determined potential fields, where the material treatment takes place by the 

solid/tool moving with a variable motion. They are three dimensions determining the space 

where the process takes place, with the fourth dimension being time of the tool motion in the 

space. 

 The space dimensions are determined by the potential fields on which the corresponding 

energetic states of the tool and workpiece occur. In vertical direction, on the level of zero line 

(see Fig. 1), there is a stable static potential field SSPF where the edge possesses a stable 

energetic state. Of course, this field has a time character because the mentioned state lasts 

longer than a while. At the level/height of place where the edge is leaving material, the 

instantaneous unstable static potential field  ASPF  is situated. Here this energetic state in 

vertical direction lasts for a while so that the field has instantaneous character. The z  

distance between these fields, corresponding with the height of edge track, is the height of the 

space-time. At the same time it is equal to the difference of in-feed 
h  and the edge in-depth 

in the place of leaving the material, that is 2

za . Therefore 

                                                                2

zahz                                                              (1.1) 

 

The kinematic potential field, that is KPF, is moving in horizontal direction; it is 

moving in this direction with a constant velocity, being the velocity of machined workpiece 

material, that is mv . Positions of these fields in terminal points of the repel zone are 

determined by the lengths 21

  xl  of this zone (in horizontal direction). 

The third dimension of the space-time (in transversal direction) is illustrated by A-A 

cross-section of the machined workpiece. In this cross-section, the positions of side/lateral 

potential fields SPF, coming through the terminal points of machining trace in the widest 

place, are visible. The distance between these fields is the width 
b  of the space-time, 

corresponding with the width 1

zb  of the machining trace in the point 1 where the repel zone 

begins. 

It is worth explaining the remaining parameters of the machining trace and a solid/tool 

edge track. That is the maximum depth  

za  of the trace, which is its depth in the point 1 (the 

place of beginning of the retarded motion of edge in the vertical direction), thus 1

za . 

Instantaneous depth  za  in the repel zone, that is at the height of coordinate x , connected with 

time t and the velocity mv  by the dependence 

                                                                   tvx m                                                               (1.2) 

 

is the difference between the instantaneous in-feed h in this zone and the corresponding height 

of the tool edge track. Therefore 

                                                                  zhaz                                                              (1.3) 

 

Symbol 2

zb  determines the width of trace in the point 2, that is in the site of edge leaving the 

machined material. 
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3.  KINETICS OF SOLID/TOOL IN THE MACHINING SPACE-TIME 

 

Now, having a precise description of the machining space-time notion, as well as its 

characterization, one may start the description of the tool kinetics in this space-time. The 

starting point for the kinetics description, and then also dynamics and stored energy of the 

tool, is the analytically presented dependence of the tool edge path length on time. That 

dependence (together with its mathematical derivation) has been derived and presented in the 

work [1]. That functional dependence has the following analytical form: 

                                                             
















 oT

t

ezz 12                                                       (1.4) 

 

where the symbol oT determines the time constant, corresponding with that retarded motion. 

Other symbols were explained earlier. 

 The transition time of the tool edge from the point 1 to point 2, 21t , is determined by 

introducing the parameter z  (second coordinate of point 2) and the mentioned time 

coordinate to the equation (1.4). Therefore 

                                                                2ln21 oTt                                                             (1.5) 

 

and 

                                                                   
2ln

21
t

To                                                              (1.6) 

 

 Thus the equation (1.4) is determined mathematically for  ,0t , and physically for 

21,0  tt . Of course, only the second interval of time variability will be considered because 

the adequate and real description of the studied reality is of importance. 

 The first derivative kinetic magnitude is the tool velocity, that is zv . It is the first 

derivative of the edge path length (also of the whole tool) against time. Thus it is expressed by 

the following dependence: 

                                                     oo T

t

T

t

o

z eve
T

z

dt

dz
v



 0

1

2
                                               (1.7) 

 

Symbol 0

1v  determines the initial vertical velocity, in the point 1. 

In the formula (1.7), taking into account time t resulting from the dependence (1.2), one 

obtains 

                                                       omom Tv

x

Tv

x

o

z eve
T

z
v



 0

1

2
                                                (1.8) 

 

so the velocity as the function of the tool position against the machined workpiece. The 

product omTv  is the path constant oX , referred to the workpiece, that is 

                                                                 omo TvX                                                              (1.9) 
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so 

                                                      oo X

x

X

x

o

z eve
T

z
v



 0

1

2
                                                  (1.10) 

 

The acceleration is the second derivative kinetic magnitude. It is also the second 

derivative of the edge path length on time. At the same time, the acceleration is the first 

derivative of velocity on time. Therefore 
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                                (1.11) 

 

Symbol 0

1p  denotes the initial vertical acceleration. 

Following the way as above, or regarding time expressed by dependence (2) in the 

formula (1.11), one obtains  
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and further, by regarding (1.9) 
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In turn, the impulse is the third derivative kinetic magnitude. This is the third derivative 

of the path length against time, the second derivative of velocity against time, and the first 

derivative of acceleration against time. Taking these into account, one obtains 
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where the symbol 0

1i  denotes the initial vertical jerk. 

That last magnitude, or jerk, may be also expressed as the function of variable x. 

Therefore  
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By taking into consideration the dependence (1.9), one obtains 
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All these kinetic magnitudes have been characterized quantitatively. The values of 

determined magnitudes were excerpted from [1]. As it was mentioned in the introduction, 

units of the magnitudes result from the units of the three basic magnitudes, such as mass (kg), 
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length (m), and time (s). The graphic illustration of these magnitudes will be presented as the 

function of coordinate x. 

The length of repel zone, or the length of the machining space-time, 21x , equals 

90·10
3 

m. The velocity of table on which the sample was fixed, was equal 112 mm·min
1

, or 

1.8(6) mm·s
1

 = 1.86·10
3 
m·s

-1
. The in-feed 

h  equals 7.875·10
3 

m, and the in-depth of edge 

in the point 2 (at the end of machining zone), or 2

za , has the value equaling 0.040·10
3 

m. 

These data will allow to formulate quantitative equation of the edge path length in the repel 

zone, as well as the equations of remaining kinetic magnitudes: velocity zv , acceleration zp , 

and jerk zi . 

Real height of the repel zone z , corresponding with the height of machining space-

time – according to the formula (1.1) – is equal the difference of in-feed 
h  and the edge in-

depth in the site of leaving the material, that is 2

za . Therefore 

                             3332 10835.710040.010875.7   zahz m                       (1.17) 

 

The transition time of edge from the point 1 to point 2, i.e. 21t , results from the formula 

(1.2), and is equal 

                                              387.48
10)6(8.1

1090
3

3

21
21 













mv

x
t s                                      (1.18) 

 

Now, the time constant oT  should be calculated, and acc. to formula (1.6), it equals  

                                                  823.69
693.0

387.48

2ln

21  t
To s                                            (1.19) 

 

Thus the equation of the path length (1.4) has the following quantitative form: 
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By substituting the values of the magnitudes z , mv , and oT  to the formula (1.8), one 

obtains 

                   823.693823.69
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z eeeve
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z
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with the unit of zv  being m·s
1

. 

To determine the quantitative dependence of  xfvz   the value of path constant oX
 
is 

needed. It is calculated from the equation (1.9), then 

                                33 1057.130823.6910)6(8.1   omo TvX m                           (1.22) 

 

According to equation (1.10), one obtains 
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That kinetic function has been illustrated graphically in Fig. 3. According to 

notation/marking of the axes of coordinate system, that function has the following form: 

                                                         823.6941024.2

t

z ev


                                                  (1.24) 

 

or 

                                                      
31057.13041024.2






x

z ev                                                (1.25) 

 

Two these functions have been also placed in Fig. 3.  

 

 
Fig. 3. Dependence of tool velocity zv  on time t and horizontal coordinate x of its position on the track 

of material machining. 
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The velocity zv  of the tool is presented as the function of time t and coordinate x of its 

position on the path of material treatment. On the direction of horizontal axis the following 

values are marked: time constant oT  and path constant oX . As can be seen, they form 

horizontal leg of rectangular triangle, with the vertical leg being the value of the initial 

velocity ( 40

1 1024.2 v m·s
-1

), and hypotenuse – tangent to the curve  xfvz   in the initial 

point. 

Now, by substituting values of the magnitudes z , mv , and oT  to the formula (1.11), one 

obtains 
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with the unit of zp  being m·s
2

. 

After regarding the value oX  in the formula (1.13), one obtains 
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That function has been also illustrated graphically in Fig. 4, by presenting the 

dependence of acceleration zp  of the tool on time t and the horizontal coordinate x of its 

position on the path of material treatment. Visible here the rectangular triangle, with the 

hypotenuse placed on the direction of tangent to the curve in the initial point, has the vertical 

leg of right-angled triangle equal to the initial value of acceleration ( 60

1 10208.3 p m·s
2

). 

Its horizontal leg is equal to the path constant oX , and also corresponding with the time 

constant oT . 

At this point, the third kinematic magnitude, i.e. jerk zi  will be described. Values of the 

magnitudes z , mv , and oT  are now substituted to the formula (1.14). Therefore 
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with the unit of zi  being m·s
3

. 
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By regarding the values oX  in the formula (1.16), one obtains 
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Fig. 4. Dependence of acceleration zp  of tool on time t and horizontal coordinate x of its position on 

the path of material treatment 

 

That function has been illustrated graphically in Fig. 5, by presenting the dependence of 

jerk zi  on time t and horizontal coordinate x of its position on the path of material treatment. 
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The illustration also explains that the curve – alike two former curves – comes out as a 

tangent from the top of right-angled triangle of the determined values of legs. Here the 

vertical leg is the initial jerk 0

1i  of the value 4.594·10
8 
m·s

3
. The horizontal leg is the path 

length 31057.130 oX m, with the corresponding time constant 823.69oT s. 

 
Fig. 5. Dependence of jerk zi  of tool on time t and horizontal coordinate x of its position on the path 

of material treatment. 

 

 

4.  CONCLUSION 

 

In the conclusion it is worth underlying the new, quite different method of procedure in 

reference to the description of the considered system. That method came into being as a result 

of very critical look on scheme, i.e. the existent rules in the range of description of mechanics 

of solid. As it results from this work, the behaviour of tool in the machining zone could be 

described adequately and extensively. It was possible by returning to the source, that is after 
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formulating a correct description of the primary magnitude, being the path length of tool. In 

turn, that description resulted from the differential equation of a general form, presenting 

dependence of exponential increase/increment of physical magnitudes; the increase/increment 

resulted from the incremental variations/changes of other magnitudes of this type, is being 

independent variable. That differential equation was given in [11], and the works [12-15] are 

to explain other multilateral use of that equation. 

This Part 1 concludes the kinetics of the derived system. In Part 2 the dynamics is to be 

considered, and Part 3 is devoted to the energy of the solid/tool fixed flexibly. 
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