Czasopismo
2014
|
Vol. 47, nr 2
|
465--473
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
It is known that every Sikorski space with the countably generated differential structure is smoothly real-compact. It means that every homomorphism from its differential structure, which forms a ring of smooth real-valued functions into the ring of real numbers, is an evaluation. This result is sharp: there is a non-smoothly real-compact Sikorski space with the differential structure which is not countably generated. We provide an easy example demonstrating this. By modifying this example we are able to show a certain shortcoming of the generator embedding, comparing to the canonical embedding, for Sikorski spaces. Finally, we note that a homomorphism from the ring of smooth functions of a Sikorski space into the ring of real numbers is an evaluation if and only if it is continuous.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
465--473
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland, m.cukrowski@mini.pw.edu.pl
autor
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland, m.stronkowski@mini.pw.edu.pl
Bibliografia
- [1] J. Arias-de-Reyna, A real valued homomorphism on algebras of differentiable functions, Proc. Amer. Math. Soc. 104 (1988), 1054–1058 .
- [2] J. L. Blasco, Some problems on homomorphisms and real functions algebras, Monatsh. Math. 133 (2001), 89–92.
- [3] M. J. Cukrowski, Z. Pasternak-Winiarski, W. Sasin, On real-valued homomorphisms in countably generated differential structures, Demonstratio Math. 45 (2012), 665–676.
- [4] D. Dziewa-Dawidczyk, Z. Pasternak-Winiarski, Uniform structures on differential spaces, ArXiv (2011), no. 1103.2799v1.
- [5] M. Heller, Algebraic foundations of the theory of differential spaces, Demonstratio Math. 24 (1991), 349–364.
- [6] J. L. Kelley, General Topology, 2nd ed., New York, Springer-Verlag, 1975.
- [7] A. Kriegl, P. Michor, W. Schachermayer, Characters on algebras of smooth functions, Ann. Global Anal. Geom. 7 (1989), 85–92.
- [8] A. Kriegl, P. W. Michor, More smoothly real compact spaces, Proc. Amer. Math. Soc. 117 (1993), 467–471.
- [9] A. Kriegl, P. W. Michor, The Convenient Setting of Global Analysis, Mathematical Surveys and Monographs 53, Providence, AMS, 1997.
- [10] T. J. Ransford, Characters and point evaluations, Canad. Math. Bull. 38 (1995), 237–241.
- [11] R. Sikorski, Differential modules, Colloq. Math. 24 (1971), 45–79.
- [12] R. Sikorski, Introduction to the Differential Geometry, Warsaw, PWN, 1972 (in Polish).
- [13] W. Waliszewski, On differential subspaces of Cartesian space, Colloq. Math. 45 (1981), 257–265.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-cdfa3d60-0b6f-48c6-86e7-c5ded2794521