Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 33, No. 2 | 292--300
Tytuł artykułu

Synthesis and modification of reduced graphene oxide aerogels for biofuel cell applications

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We have carried out the preparation of reduced graphene oxide aerogels using eco-friendly method that is based on the Hummers method of graphite oxidation without the use of NaNO3 that produces toxic gases. To obtain a porous 3D structure of reduced graphene oxide, we performed the hydrothermal reduction at elevated temperature. We also prepared the rGO aerogel/CNT composite using multiwalled carbon nanotubes as linkers. The rGO aerogels are promising materials as they possess good electrical conductivity (up to 100 S/m) and high surface area and porous structure (similar to 500 m(2)/g). The main goal was to obtain the material for electrodes in enzymatic biofuel cells. Thus, the proper modification was performed using free radical functionalization. It was shown that in order to synthesize rGO aerogels modified with anthracene, the proper order of reactions needs to be provided. The morphology of anthracene modified electrodes was analyzed using scanning electron microscopy, which confirmed their porous structure with non-uniform pore size distribution that ranged between few nanometers to microns. Data obtained by Raman spectroscopy confirmed the successful oxidation and reduction of analyzed materials. UV-Vis spectra revealed the presence of anthracene moieties in examined materials. We also recorded preliminary cyclic voltammograms that confirm an electric conductivity of the obtained structures.
Wydawca

Rocznik
Strony
292--300
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
  • Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland, ikondratowicz@mif.pg.gda.pl
  • Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
autor
  • Division of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Warsaw, Pasteura St. 1, 02-093 Warsaw, Poland
autor
  • Division of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Warsaw, Pasteura St. 1, 02-093 Warsaw, Poland
Bibliografia
  • [1] FILIP J., TKAC J., Electrochim. Acta, 136 (2014), 341.
  • [2] MCCREERY R., Chem. Rev., 108 (2008), 2646.
  • [3] JI C.-C., XU M.-W., BAO S.-J., CAI C.-J., LU Z.J., CHAI H., YANG F., WEI H., J. Colloid. Interf. Sci., 407 (2013), 416.
  • [4] WORSLEY M.A., PAUZAUSKIE P.J., OLSON T.Y., BIENER J., SATCHER J.H., BAUMANN T.F., J. Am. Chem. Soc., 132 (2010), 14067.
  • [5] LEE Y.J., KIM G.P., BANG Y., YI J., GIL SEO J., SONG I.K., Mater. Res. Bull., 50 (2014), 241.
  • [6] HUMMERS W., OFFEMAN R., J. Am. Chem. Soc., 80 (1958), 1339.
  • [7] XU Y., SHENG K., LI C., SHI G., ACS Nano, 4 (2010), 4324.
  • [8] NGUYEN S.T., NGUYEN H.T., RINALDI A., NGUYEN N.P.V., FAN Z., DUONG H.M., Colloid. Surface. A, 414 (2012), 352.
  • [9] COSNIER S., LE GOFF A., HOLZINGER M., Electrochem. Commun., 38 (2014), 19.
  • [10] BILEWICZ R., OPALLO M., Biocathodes for dioxygen reduction in biofuel cells, in: WIECKOWSKI A., NORSKOV J.K. (Eds.), Fuel Cell Science:Theory, Fundamentals and Biocatalysis, John Wiley & Sons, Inc, Hoboken, New Jersey, 2010, p. 169.
  • [11] MOEHLENBROCK M.J., MINTEER S.D., Introduction to the Field of Enzyme Immobilization and Stabilization, in: Minteer S.D. (Ed.), Enzyme Stabilization and Immobilization Methods and Protocols, Humana Press, 2011, p. 1.
  • [12] BAYNE L., ULIJN R.V., HALLING P.J., Chem. Soc. Rev., 23 (2013), 9000.
  • [13] BLANFORD CH.F., HEATH R.S., Chem. Commun., 17 (2007), 1710.
  • [14] SOSNA M., CHRETIEN J.-M., KILBURNA J.D., BARTLETT P.N., Phys. Chem. Chem. Phys., 12 (2010), 10018.
  • [15] STOLARCZYK K., ŁYP D., ˙Z ELECHOWSKA K., BIERNAT J.F., ROGALSKI J., BILEWICZ R., Electrochim. Acta, 79 (2012), 74.
  • [16] ˙Z ELECHOWSKA K., STOLARCZYK K., BIERNAT J.F., BILEWICZ R., ECS Trans., 45 (2013), 1.
  • [17] KARA´S KIEWICZ M., NAZARUK E., ˙ZELECHOWSKA K., BIERNAT J. F., ROGALSKI J., BILEWICZ R., Electrochem. Commun., 20 (2012), 124.
  • [18] NAZARUK E., KARA´S KIEWICZ M., ˙ZELECHOWSKA K., BIERNAT J.F., ROGALSKI J., BILEWICZ R., Electrochem. Commun., 14 (2012), 67.
  • [19] NAZARUK E., SADOWSKA K., BIERNAT J. F., ROGALSKI J., GINALSKA G., BILEWICZ R., Anal. Bioanal. Chem., 398 (2010), 1651.
  • [20] SADOWSKA K., BIERNAT J.F., STOLARCZYK K., ROBERTS K.P., ROGALSKI J., BILEWICZ R., Bioelectrochemistry, 80 (2010), 73.
  • [21] ´SWIETLIKOWSKA A., GNIADEK M., PAŁYS B., Electrochim. Acta, 98 (2013), 75.
  • [22] HUANG N.M., LIM H.N., CHIA C.H., YARMO M.A., MUHAMAD M.R., Int. J. Nanomed., 6 (2011), 3443.
  • [23] LIU M., DUAN Y. WANG Y., ZHAO Y., Mater. Design, 53 (2014), 466.
  • [24] STOLARCZYK K., SEPELOWSKA M., ŁYP D.,˙ZELECHOWSKA K., BIERNAT, J.F., ROGALSKI J., Bioelectrochemistry, 87 (2012), 154.
  • [25] FAN Z., YONG Z.D., LIM X.C., LIU P., NGUYEN S.T., XIAO P., MARCONNET A., LIM C.Y.H., DUONG H.M., Colloid. Surface. A, 445 (2014), 48.
  • [26] DREYER D.R., PARK S., BIELAWSKI C.W., RUOFF R.R., Chem. Soc. Rev., 39 (2010), 228.
  • [27] DATSYUKA D., KALYVAA M., Carbon, 46 (2008), 833.
  • [28] SADOWSKA K., ROBERTS K.P., WISER R., BIERNAT J.F., JABŁONOWSKA E., BILEWICZ R., Carbon, 47 (2009), 1501.
  • [29] BILEWICZ R., NAZARUK E., ˙ZELECHOWSKA K., BIERNAT J.F., STOLARCZYK K., ROBERTS K.P, GINALSKA G., ROGALSKI J., Biocybern. Biomed. Eng., 31 (2011), 17.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-cdf2a901-b57d-4e06-a29f-99f8a522e3f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.