Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 21, no. 4 | 379--392
Tytuł artykułu

Characteristics of Laminates for Car Seats

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the presented research, 11 different laminates were compared, 8 of them were two-layered 3 of them were three-layered laminates. The laminates that were analyzed vary by the type of face-side textile material (knitted and nonwoven textiles), density and thickness of the foam, and specific properties (higher air permeability and low-emission foam). Depending on the different types of laminates, different laminating processes are used: hot-melt, flame, and powder laminations. The purpose of the presented research is to analyze the basic characteristics of the different laminate structures. Properties that are important for these types of laminates are the number of layers, areal density, thickness, resistance to rubbing, fire resistance, water vapor permeability, air permeability, breaking force and extension, thermal conductivity, and stratification. We found that the properties of laminates were not affected by the density and thickness of the foam. Nonwovens and other laminate components do not perform because they have lower abrasion resistance and lower tensile strength than knitted fabrics as the face layer. Knit laminates have good abrasion resistance, high air permeability, and water vapor permeability. Both are self-extinguishing to the first or second mark. Three-layered laminates have lower thermal conductivity and air permeability than two-layered laminates.
Wydawca

Rocznik
Strony
379--392
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
  • Department of Textiles, Graphic Arts and Design, Faculty of Natural Science and Engineering, University of Ljubljana, Snezniska 5, SI-1000 Ljubljana, Slovenia
  • Department of Textiles, Graphic Arts and Design, Faculty of Natural Science and Engineering, University of Ljubljana, Snezniska 5, SI-1000 Ljubljana, Slovenia, dunja.sajn@ntf.uni-lj.si
Bibliografia
  • [1] History of Car Seat Padding (2014). European Association of Manufacturers of Molded Polyurethane Parts for the Automotive Industry. Web site: http://www.euromoulders.org/polyurethane-foam/history-of-car-seat-padding.
  • [2] Fung, W., Hardcastle, J. M. (2001). Textiles in automotive engineering. Woodhead Publishing Limited (Oxford), pp. 137–150.
  • [3] Cook, J. G. (2012). Handbook of textile fibres. Woodhead Publishing Limited (Oxford), p. 166.
  • [4] Blair, R., Reynolds, J. I., Weierstall, M. (2008). Automotive cushioning through the ages. The Woodbridge Group, Web site: <https://www.moldedfoamip.com/linkedpdf/Technical%20Info%20%20Automotive%20Cushioning%20Through%20the%20Ages.pdf>.
  • [5] Woodford, C. (2009). Rubber. Web site: <http://www.explainthatstuff.com/rubber.html>.
  • [6] History of latex foam. Web site: <http://www.latexfoam.de/background.htm>.
  • [7] Frisch, K. C. (2006). History of science and technology of polymeric foams. University of Detroit Polymer Institute. Web site: <http://www.tandfonline.com/doi/abs/10.1080/00222338108066455>.
  • [8] The Benefits and History of Polyurethane Flexible Foam (2015). Web site: <http://www.polyurethanes.org/blog/2015/12/the-benefits-and-history-of-polyurethane-flexible-foam/>.
  • [9] Composition of CAR LA laminates (2019). Web site: <http://forigroup.com/technical-textile-test/design-development>.
  • [10] Chapman, R. (2010). Applications of nonwovens in technical textiles. Woodhead Publishing Limited (Oxford), 3–16.
  • [11] Singha, K. (2012). A review on coating & lamination in textiles: processes and applications. American Journal of Polymer Science, 39–49. Web site: <https://pdfs.semanticscholar.org/ae08/929453432dfbdf69cbf7241f7ed08c309ad1.pdf>.
  • [12] ISO 3801 (1996). Textiles–Fabrics-Determination of surface mass per unit length and surface unit. Method, 5, 3 p.
  • [13] SIST EN ISO 5084 (1999). Textiles-Determination of thickness of textiles. 5 p.
  • [14] DIN 53354 (1981). Testing of artificial leather, tensile test. 12 p.
  • [15] ISO 1798 (2009). Foamed polymeric materials-Determination of tensile strength and elongation at break. 2 p.
  • [16] FMVSS302 (2011). Flammability of interior materials, Horizontal burn rate test. 28 p.
  • [17] ISO 9237 (1995). Textiles-Determination of the permeability of fabrics to air. 5 p.
  • [18] Šajn Gorjanc, D., Dimitrovski, K., Bizjak, M. (2012). Thermal and water vapor resistance of the elastic and conventional cotton fabrics. Textile Research Journal, 82(14), 1498–1506.
  • [19] ISO 12947-1 (1998). Textiles—Determination of the abrasion resistance of fabrics by the Martindale method—Part 1: Martindale abrasion testing apparatus. 12 p.
  • [20] ASTM E96: E96M (2016). Standard test methods for water vapor transmission of materials. 8 p.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-cde9bfb1-0277-494b-a778-1e0dd0ef06d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.