Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | nr 28 | 27--40
Tytuł artykułu

Wykorzystanie algorytmu optymalizacji rojem cząstek do rozwiązywania układów równań nieliniowych

Treść / Zawartość
Warianty tytułu
EN
Particle swarm optimization algorithm for solving systems of nonlinear equations
Języki publikacji
PL
Abstrakty
PL
Artykuł dotyczy wykorzystania algorytmu optymalizacji rojem cząstek do rozwiązywania układów równań nieliniowych. Przeprowadzona została eksperymentalna analiza efektywności i skuteczności działania algorytmu w zależności od ustawień jego parametrów.
EN
The article concerns the use of a particle swarm optimization algorithm for solving nonlinear equation systems. An experimental analysis of the effectiveness and efficiency of the algorithm has been conducted, considering various settings of its parameters.
Wydawca

Rocznik
Tom
Strony
27--40
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
  • Warszawska Wyższa Szkoła Informatyki
Bibliografia
  • [1] J. Frączek, „Modelowanie mechanizmów przestrzennych metodą układów wieloczłonowych”, Prace Naukowe Politechniki Warszawskiej. Mechanika nr 196, pp. 3-138, 2002.
  • [2] M. Jeż, A. Świder, „Analiza drgań nieliniowych jednocylindrowego silnika tłokowego”, Journal of KONES Vol. 8, No. 3-4, pp. 98-105, 2001.
  • [3] M. Gajer, „Zastosowanie algorytmu ewolucyjnego do analizy nieliniowych obwodów elektrycznych”, Przegląd Elektrotechniczny Vol. 86, No. 7, pp. 342-345, 2010.
  • [4] R. Szymkiewicz, Metody numeryczne w inżynierii wodnej. Politechnika Gdańska, 2007.
  • [5] B. Saheya, G. Chen, Y. Sui, and C. Wu, “A new Newton-like method for solving nonlinear equations” SpringerPlus Vol. 5, pp. 1-13, 2016. [Online]. https://doi.org/10.1186/s40064-016-2909-7
  • [6] J.L. Hueso, E. Martı́nez, J.R. Torregrosa, “Modified Newton’s method for systems of nonlinear equations with singular Jacobian”, Journal of Computational and Applied Mathematics Vol. 224, No. 1, pp. 77-83, 2009. [Online]. https://doi.org/10.1016/j.cam.2008.04.013
  • [7] J.R. Sharma and H. Arora, “On efficient weighted-Newton methods for solving systems of nonlinear equations”, Applied Mathematics and Computation Vol. 222, pp. 497-506, 2013. [Online]. https://doi.org/10.1016/j.amc.2013.07.066
  • [8] Y.-Z. Luo, G.-J. Tang, and L.-N. Zhou, “Hybrid approach for solving systems of nonlinear equations using chaos optimization and quasi-Newton method”, Applied Soft Computing Vol. 8, No. 2, pp. 1068-1073, 2008. [Online]. https://doi.org/10.1016/j.asoc.2007.05.013
  • [9] M.K.A. Ariyaratne, T.G.I. Fernando, S. Weerakoon, “Solving systems of nonlinear equations using a modified firefly algorithm (MODFA)”, Swarm and Evolutionary Computation Vol. 48, pp. 72-92, 2019. [Online]. https://doi.org/10.1016/j.swevo.2019.03.010
  • [10] C. Grosan, A. Abraham, A. Gelbukh, “Evolutionary Method for Nonlinear Systems of Equations”, MICAI 2006: Advances in Artificial Intelligence, Berlin, Heidelberg, 2006, pp. 283-293. [Online]. http://isda05.softcomputing.net/micai06.pdf
  • [11] Y. Mo, H. Liu, Q. Wang, “Conjugate direction particle swarm optimization solving systems of nonlinear equations”, Computers & Mathematics with Applications Vol. 57, No. 11-12, pp. 1877-1882, 2009. [Online]. https://doi.org/10.1016/j.camwa.2008.10.005
  • [12] M. Jaberipour, E. Khorram, B. Karimi, “Particle swarm algorithm for solving systems of nonlinear equations”, Computers & Mathematics with Applications Vol. 62, No. 2, pp. 566-576, 2011. [Online]. https://doi.org/10.1016/j.camwa.2011.05.031
  • [13] J. Kennedy, R. Eberhart, “Particle swarm optimization”, Proceedings of IEEE International Conference on Neural Networks IV Vol. 4, 1995, pp. 1942-1948. [Online]. https://www.academia.edu/download/30280202/_reading6_1995_particle_swarming.pdf
  • [14] E. Elbeltagi, T. Hegazy, D. Grierson, “Comparison among five evolutionary-based optimization algorithms”, Advanced engineering informatics Vol. 19, No. 1, pp. 43-53, 2005. [Online]. https://doi.org/10.1016/j.aei.2005.01.004
  • [15] Y. He, W.J. Ma, J. P. Zhang, “The parameters selection of PSO algorithm influencing on performance of fault diagnosis”, MATEC Web of conferences Vol. 63, 2016, p. 02019. [Online]. https://www.matec-conferences.org/articles/matecconf/pdf/2016/26/matecconf_mmme2016_02019.pdf
  • [16] G.H. Nedzhibov, “A family of multi-point iterative methods for solving systems of nonlinear equations”, Journal of Computational and Applied Mathematics Vol. 222, No. 2, pp. 244-250, 2008. [Online]. https://doi.org/10.1016/j.cam.2007.10.054
  • [17] Kalkulator Wolfram Alpha. [Online]. https://www.wolframalpha.com
  • [18] J. McCaffrey, “Neural Network Lab: Particle Swarm Optimization Using C#”, Visual Studio Magazine 2013. [Online]. https://visualstudiomagazine.com/Articles/2013/11/01/Particle-Swarm-Optimization.aspx
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-cde178c4-aa81-47b8-a445-e3daa9aa419d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.