Warianty tytułu
Języki publikacji
Abstrakty
The detonation propensity of hydrogen-air mixtures with addition of methane, ethane or propane in wide range of compositions is analyzed. The analysis concerned the detonation cell width, ignition delay time, RSB and χ parameters. Results are presented as a function of hydrogen molar fraction. Computations were performed with the use of three Cantera 2.1.1. scripts in the Matlab R2010b environment. The validated mechanisms of chemical reactions based on data available in the literature were used. Six mechanisms were assessed: GRI-Mech 3.0, LLNL, SanDiego, Wang, POLIMI and AramcoMech. In conclusion, the relation between detonation propensity parameters is discussed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
47--58
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technology Institute of Heat Engineering Nowowiejska 21/25, 00-665 Warsaw, Poland, tel.: + 48 22 234 52 66, agnieszka.jach@itc.pw.edu.pl
autor
- Warsaw University of Technology Institute of Heat Engineering Nowowiejska 21/25, 00-665 Warsaw, Poland, tel.: + 48 22 234 52 66
Bibliografia
- [1] Fickett, W. and Davis W. C., Detonation, 1979, University of California Press, Berkeley - Los Angeles – London.
- [2] Gavrikov, A. I., Efimenko, A. A. and Dorofeev S. B., A Model for Detonation Cell Size Prediction from Chemical Kinetics, Combustion And Flame, No. 120, 2000, pp. 19-33.
- [3] Radulescu M. I., The propagation and failure mechanism of gaseous detonations: experiments in porouswalled tubes, 2003, PhD Thesis, Department of Mechanical Engineering McGill University Montreal, Quebec.
- [4] Radulescu M. I., Sharpe G. J. and Bradley D., A universal parameter quantifying explosion hazards, detonability and hot spot formation: χ number, ISFEH7 Proceedings of the Seventh International Seminar, 2013.
- [5] Radulescu, M. I. and Borzou, B., Evaluation of hydrogen, propane and methane-air detonations instability and detonability, International Conference of Hydrogen Safety, 2013.
- [6] Shock & Detonation Toolbox, Graduate Aerospace Laboratories of the California Institute of Technology, Caltech, http://www2.galcit.caltech.edu/EDL/public/cantera/html/SD\_Toolbox
- [7] Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. Th., Hanson, R. K., Song, S., Gardiner Jr. W. C., Lissianski V. V. and Qin Z., GRI-Mech 3.0 Combustion Model, http://www.me.berkeley.edu/gri_mech/
- [8] Marinov, N. M., Pitz, W. J., Westbrook, C. K., Vincitore, A. M., Castaldi, M. J., Senkan, S. M., Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Laminar Premixed n-Butane Flame, Combustion And Flame, No. 114, 1998, pp. 192-213.
- [9] Chemical-Kinetic Mechanisms for Combustion Applications, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego, http://combustion.ucsd.edu
- [10] Davis, S. G., Law, C. K. and Wang, H., Propene pyrolysis and oxidation kinetics in a flow reactor and laminar flames, Combustion and Flame, No. 119, 1999, pp. 375-399.
- [11] Faravelli, T., Frassoldati, A. and Ranzi E., Kinetic modeling of the interactions between NO and hydrocarbons in the oxidation of hydrocarbons at low temperatures, Combustion And Flame, No. 132, 2003, pp. 188-207.
- [12] Metcalfe, W.K., Burke, S.M., Ahmed, S.S. and Curran, H.J., A Hierarchical and Comparative Kinetic Modeling Study of C1–C2 Hydrocarbon and Oxygenated Fuels, Int. J. Chem. Kinet., No. 45 (10), 2013, pp. 638-675.
- [13] Burke, M.P., Chao,s M., Ju, Y., Dryer, F.L. and Klippenstein, S.J., Comprehensive H2/O2 Kinetic Model for High-Pressure Combustion, International Journal of Chemical Kinetics, No. 36, 2012, pp. 444-474.
- [14] Schultz, E. and Shepherd, J., Validation of Detailed Reaction Mechanisms for Detonation Simulation, Graduate Aeronautical Laboratories California Institute of Technology, Explosion Dynamics Laboratory Report FM995, 2000.
- [15] Teodorczyk, A., Abatorab, A., Dąbkowski, A. and Jarnicki, R., Database and elaboration of an algorithm of validation of detailed reaction mechanisms for combustion of gas mixtures (written in Polish), Institute of Heat Engineering, Warsaw University of Technology, 2001.
- [16] Belles, F.E. and Lauver, M.R., Effects of concentration and of vibrational relaxation on the induction period of the H2 -O2 reaction, 10th Symp (Int.) on Combustion, 1965, pp. 285-293.
- [17] Bhaskaran, K.A., Gupta M.C. and Just T.H., Shock tube study of the effect of unsymmetric dimethyl hydrazine on the ignition characteristics of hydrogen-air mixtures, Combustion and Flame, No. 21, 1973, pp. 45-48.
- [18] Craig R.R., A shock tube study of the ignition delay of hydrogen-air mixtures near the second explosion limit, Report AFAPL-TR-66-74, 1966.
- [19] Just, T. and Schmalz, F., Measurements of ignition delays of hydrogen-air mixtures under simulated conditions of supersonic combustion chambers, AGARD CP No 34, Part 2, Paper 19, 1968.
- [20] Snyder, A.D., Robertson, J., Zanders D.L. and Skinner, G.B., Shock tube studies of fuel-air ignition characteristics, Report AFAPL-TR-65-93, 1965.
- [21] Steinberg, M. and Kaskan, W.E., The ignition of combustible mixtures by shock waves, 6th Symp. (Int.) on Combustion, 1955, pp. 664-672.
- [22] Myers, B.F. and Bartle E.R., Reaction and ignition delay times in the oxidation of propane, AIAA J., No. 7, 1969, pp. 1862-1869.
- [23] Burcat, A., Lifshitz, A., Scheller, K. and Skinner, G.B., Shock-tube investigation of ignition in propaneoxygen-argon mixtures, 13th Symp (Int.) on Combustion, 1970, pp. 745-755.
- [24] Huang, J., Hill, P.G., Bushe, W.K. and Munsh, S.R., Shock-tube study of methane ignition under enginerelevant conditions: experiments and modeling, Combustion and Flame, No. 136, 2004, pp. 25-42.
- [25] Burcat, A., Schebler, K. and Lifshitz, A., Shock-tube investigation of comparative ignition delay times for C1- C5 alkanes, Combustion and Flame, No. 16, 1971, pp. 29-33.
- [26] Dabma, E. K, Ragland, K W. and Nicholls J. K., A study of heterogeneous detonations, Department of Aerospace Engineering, The University of Michigan Ann Arbor, Michigan, USA.
- [27] Beeson H.D., McClenagan R.D., Bishop C.V., Benz F.J., Pitz W.J., Westbrook C.K. and Lee J.H.S., Detonability of hydrocabon fuels in air, In Prog. Astronaut. Aeronaut., No. 133, 1991, pp. 19-36.
- [28] Kaneshige M. and Shepherd J.E., Detonation database, GALCIT, Technical Report FM97-8, 1997.
- [29] Bull D.C., Elsworth J.E., Shuff P.J. and Metcalfe E., Detonation cell structures in fuel/air mixtures, Combust. Flame, No. 45, 1982, pp. 7-22.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-cdce8c63-eb30-466a-adc6-967e32b7d74e