Czasopismo
2015
|
Y. 112, iss. 2-E
|
127--147
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Energoelektroniczny filtr aktywny i bufor energii aktywnej sterowany konduktancyjnie
Języki publikacji
Abstrakty
There are many types of control method for shunt active power filter (SAPF) investigated up until now. The authors describe complex methods of determining active filter reference currents or powers. This paper is dedicated to a simple, but universally used control algorithm based on the load equivalent conductance approach. This method allows for non-active current compensation, energy buffering, and energy redistribution among loads under compensation. It is also useful for voltage-source as current-source inverter based active filters, and for DC system as well as for AC single or three-phase filters.
Zadaniem energoelektronicznego filtru aktywnego jest kompensacja prądu nieaktywnego w gałęzi źródła zasilania. Znanych jest wiele metod pozyskiwania informacji niezbędnych do skompensowania tego prądu. Często są to wyrafinowane metody, bardzo złożone zarówno pod względem pojęciowym, jak i obliczeniowym. W niniejszym artykule przedstawiono nieskomplikowaną, lecz wydajną i wielofunkcyjną metodę uzyskiwania wzorca składowej czynnej prądu obciążenia. Jest ona oparta na pojęciu konduktancji zastępczej obciążenia. Umożliwia nie tylko kompensację prądu nieaktywnego, ale również sterowanie przepływem energii czynnej, w tym jej rekuperację i redystrybucję do kompensowanych obciążeń. Opisana metoda może być stosowana w obwodach jedno- i wielofazowych, a także w obwodach zasilanych sygnałem stałym. Może też zostać użyta wobec filtru aktywnego opartego i na falowniku napięcia, i na falowniku prądu.
Czasopismo
Rocznik
Tom
Strony
127--147
Opis fizyczny
Bibliogr. 33 poz., rys., wz., wykr.
Twórcy
autor
- Faculty of Electrical and Computer Engineering, Cracow University of Technology
Bibliografia
- [1] Asiminoaei L., Blaabjerg F., Hansen S., Detection is key. Harmonic detection methods for active power filter applications, IEEE Ind. Appl. Mag., 2007, Vol. 13(4), 22-33.
- [2] Miret J., Castilla M., Mattas J., Guerrero J.M., Vasquez J.C., Selective harmonic-compensation control for single-phase active power filter with high harmonic rejection, IEEE Trans. on Ind. Electr., 2009, Vol. 56(8), 3117-3127.
- [3] Mariethoz S., Rufer A.C., Open loop and closed loop spectral frequency active filtering, IEEE Trans on Pow. Electr., 2002, Vol. 17(4), 564-573.
- [4] Rahmani S., Al-Haddad K., Fnaiech Y., Comparison of two PWM techniques for a single-phase shunt active power filter applying indirect current control, IEEE Int. Conf. on Ind. Techn., 2004, 639-644.
- [5] Farrokhi M., Jamali S., Mousavi S.A., Fuzzy logic based indirect current control of the shunt active power filter, IEEE Univ. Pow. Eng. Conf., 2004, 489-493.
- [6] Singh B.N., Singh B., Chandra A., Rastgoufard P., Al-Haddad K., An improved control algorithm for active filter, IEEE Trans. on Power Delivery, 2007, Vol. 22(2), 1009-1020.
- [7] Nedeljković D., Nemec M., Drobnić K., Ambroźić V., Direct current control of active power filter without filter current measurement, Int. Symp. on Pow. Electron., Electr. Drives, Aut. and Mot., 2008, 72-76.
- [8] Khadkikar V., Chandra A., Singh B.N., Generalised single-phase p-q theory for active power filtering: simulation and DSP-based experimental investigation, IET Pow. Electron., 2009, Vol. 2(1), 67-78.
- [9] Orts-Grau S., Gimeno-Sales F.J., Segui-Chilet S., Abellen-Garcia A., Alcaniz-Fillol M., Masot-Peris R., Selective compensation in four-wire electric systems based on a new equivalent conductance approach, IEEE Trans. on Ind. Electr., 2009, Vol. 56(8), 2862-2874.
- [10] Vardar K., Akpinar E., Comparing ADALINE and IRPT methods based on shunt active power filter, Euro. Trans. Electr. Power, 2011, Vol. 21, 924-936.
- [11] Wu J.-C., Jou H.-L., Simplified control method for the single-phase active power filter, IEE Proc.-Electr. Power Appl., 1996, Vol. 143(3), 219-224.
- [12] Tang Y., Loh P.C., Wang P., Choo F.H., Gao F., Blaabjerg F., Generalized Design of High Performance Shunt Active Power Filter With Output LCL Filter, IEEE Trans. on Ind. Electr., 2012, Vol. 59(3), 1443-1452.
- [13] Piróg S., PWM rectifier and active filter with sliding-mode control, EPE Trondheim, 1997.
- [14] Singh B.N., Chandra A., Al-Haddad K., Performance comparison of two control techniques applied to an active filter, Int. Conf. on Harm. and Qual. of Power, 1, 1998, 133-138.
- [15] Huang S.-J., Wu J.-C., A control algorithm for three-phase three-wired active power filters under nonideal mains voltages, IEEE Trans. on Power Electr., 1999, Vol. 14(4), 753-760.
- [16] Chandra A., Singh B., Singh B.N., Al-Haddad K., An improved control algorithm of shunt active filter for voltage regulation, harmonic elimination, power-factor correction, and balancing of nonlinear loads, IEEE Trans. on Ind. Electr., 2000, Vol. 15(3), 495-507.
- [17] Azevedo H.J., Ferreira J.M., Martins A.P., Carvalho A.S., Direct current control of an active power filter for harmonic elimination, power factor correction and load unbalancing compensation, EPE, Toulouse 2003.
- [18] Nunez-Zuniga T.E., Pomilio J.A., Shunt active power filter synthesizing resistive loads, IEEE Trans. on Ind. Electr., 2002, Vol. 17(2), 273-278.
- [19] Hamadi A., Al-Haddad K., Lagace P.J., Chandra A., Indirect current control techniques of three-phase APF using fuzzy logic and proportional integral controller: Comparative analysis, Int. Conf. on Harm. and Qual. of Power, 2004, 362-367.
- [20] Singh B.N., Sliding mode control technique for indirect current controlled active filter, IEEE Annual Reg. 5 Conf., 2003, 51-58.
- [21] Strzelecki R., Benysek G., Jarnut M., Power quality conditioners with minimum number of current sensor requirement, Int. School on Nonsin. Currents and Compensation, 2008, 1-4.
- [22] Watson R.V., Sampled energy control of a single-phase shunt active power filter synthesizing a resistive load, EPE 2009.
- [23] Chen Z., Luo Y., Chen M., Shi L., Li J., Design and implementation of a high performance aeronautical active power filter, IEEE Ann. Conf. IECON, 2010, 2032-2037.
- [24] Fei J., Li T., Zhang S., Indirect current control of active filter using novel sliding mode controller, Workshop on Control and Modeling for Power Electronics, 2012, 1-6.
- [25] Szromba A., A shunt active power filter: development of properties, COMPEL, 2004, Vol. 23(2), 735-46.
- [26] Szromba A., Energy controlled shunt active power filters, COMPEL, 2007, Vol. 26(4), 1142-1160.
- [27] Szromba A., Sampled Method of Active Power Filter Control (Part I), Electric. Pow. Quality and Utilisation J., 2005, Vol. 11(2), 91-98.
- [28] Szromba A., Sampled Method of Active Power Filter Control (Part II), Electric. Pow. Quality and Utilisation J., 2006, Vol. 12(1), 16-25.
- [29] Bhattacharya A., Chakraborty C., A Shunt Active Power Filter With Enhanced Performance Using ANN-Based Predictive and Adaptive Controllers, IEEE Trans. on Ind. Electr., 2011, Vol. 58(2), 421-428.
- [30] Hwang J.-G., Park Y.-J., Choi G.-H., Indirect current control of active filter for harmonic elimination with novel observer-based noise reduction scheme, Electric. Engineering, 2005, Vol. 87, 261-266.
- [31] Fryze S., Wirk-, Blind-, und Scheinleistung in Elektrischen Stromkreisen mit nichtsinusformigem Verlauf von Strom und Spannung., ETZ 53, 1932, 596-599, 625-627, 700-702.
- [32] Moreno V., Pigazo A., Modified FBD method in active power filters to minimize the line current harmonics, IEEE Trans. on Pow. Deliv., 2007, Vol. 22(1), 735-746.
- [33] Savoye F., Venet P., Millet M., Groot J., Impact of periodic current pulse on Li-Ion battery performance, IEEE Trans. on Ind. Electr., 2012, Vol. 59(9), 3481-3488.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-cd8d6c97-63d5-4492-a458-7302f677b9a4