Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 22, no. 3 | art. no. e115
Tytuł artykułu

Effect of the number of passes on grain refinement, texture and properties of DC01 steel strip processed by the novel hybrid SPD method

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dual rolls equal channel extrusion (DRECE) is an unconventional severe plastic deformation (SPD) process that can effectively produce the ultrafine-grained microstructure in metals and alloys. Previously, the DRECE process carried out on non-ferrous alloys and low-carbon steels were mostly focused on the influence of process parameters on the mechanical properties. The aim of this study was the evolution of the microstructure and texture in the DC01 low-carbon steel strip after the subsequent passes of the DRECE process. The scanning transmission electron microscope and scanning electron microscope equipped with an electron backscattering diffraction detector were used for microstructure investigations. Observations after selected DRECE passes revealed defected microstructure, characteristic for the materials after SPD processes, in the form of numerous dislocation tangles, systems with dense dislocation walls and dislocation cell blocks. The texture analysis showed that with the increase of strain, the rolling texture has weakened in the tested material. These changes were accompanied by the microhardness rise.
Wydawca

Rocznik
Strony
art. no. e115
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
  • Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40‑019 Katowice, Poland
autor
  • Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40‑019 Katowice, Poland
autor
  • Institute of Metallurgy and Materials Science of Polish Academy of Sciences, Reymonta 25, 30‑059 Krakow, Poland
  • Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40‑019 Katowice, Poland
autor
  • Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40‑019 Katowice, Poland
Bibliografia
  • 1. Parikin P, Dani M, Jahja AK, Iskandar R, Mayer J. Crystal structure investigation of ferritic 73Fe24Cr2SiO・8MNO・1Ni steel for multi-purpose structural material applications. Int J Technol. 2015;4:78-88.
  • 2. Zhao L, Tangri K. TEM investigation on the interfacial boundaries in as-cast Ti3Al + TiAl alloy. Acta Mater. 1991;39:2209-24.
  • 3. You Y, Shang C, Chen L, Subramanian S. Investigation on the crystallography of reverted structure and its effect on the properties of low carbon steel. Mater Sci Eng A. 2021;546:111-8.
  • 4. Kim KJ, Yang DY, Yoon JW. Microstructural evolution and its effect on mechanical properties of commercially pure aluminum deformed by ECAE (equal channel angular extrusion) via routes A and C. Mater Sci Eng A. 2010;526:7927-30.
  • 5. Raabe D. Texture and microstructure evolution during cold rolling of a strip cast and of hot rolled austenitic stainless steel. Acta Mater. 1997;45:1137-51.
  • 6. McShane HB, Lee CP, Sheppard T. Structure, anisotropy and properties of hot rolled AA5083 alloy. Mater Sci Technol. 1990;6:428-40.
  • 7. Bayat N, Saghafian H, Razavi SH, Al-Fadhalah KJ, Ebrahimi R, Mahmudi R. Microstructure and texture characterization of simple shear extrusion. J Mater Res Technol. 2019;8:1288-99.
  • 8. Dhinwal SS, Toth LS, Lapovok R, Hodgson PD. Tailoring one-pass asymmetric rolling of extra low carbon steel for shear texture and recrystallization. Materials. 2019;12:1935-52.
  • 9. Naoki T, Kousuke Y, Ikeda K, Fuyuki Y, Hideharu N, Nobuhiro T. Change in microstructure and texture during annealing of pure copper heavily deformed by accumulative roll bonding. Mater Trans. 2007;48:2043-8.
  • 10. Inagaki H. Fundamental aspect of texture formation in low carbon steel. ISIJ Int. 1994;34:313-21.
  • 11. Zdunek J, Maj P, Kulczyk M, Miera J. Texture, residual stresses and mechanical properties analysis in the commercial 1.4462 duplex stainless steel subjected to hydrostatic extrusion. Arch Civ Mech Eng. 2019;19:525-34.
  • 12. Zhilyaev AP, Kim BK, Szpunar JA, Baro MD, Langdon TG. The microstructural characteristics of ultrafine-frained nickel. Mater Sci Eng A. 2003;361:9-14.
  • 13. Łyszkowski R. Influence of strain route changes on the microstructure and mechanical properties of CuZn36 alloy during cross channel extrusion CCE. Mater. 2022. https://doi.org/10.3390/ma15031124.
  • 14. Sanders PG, Eastman JA, Weertman JR. Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater. 1997;10:4019-25.
  • 15. Tsuji N, Shiotsuki K, Saito Y. Superplasticity of ultra-fine grained Al-Mg alloy produced by accumulative roll-bonding. Mater Trans. 1999;40:765-71.
  • 16. Valiev RZ, Islangaliew RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci. 2000;41:103-89.
  • 17. Rusz S, Cizek L, Michenka V, Dutkiewicz J, Salajka M, Hilsner O, Tylsar S, Kedron J, Klos M. New type of device for achievement of grain refinement in metal strip. Adv Mater Res. 2015;1127:91-7.
  • 18. Rusz S, Kłyszewski A, Salajka M, Hilser O, Cizek L, Klos M. Possibilities of application methods DRECE in forming of non - ferrous metals. Arch Metall Mater. 2015;60:3011-6.
  • 19. Saray O, Purcek G, Karaman I, Neidorf T, Maier HJ. Equal channel angular sheet extrusion of interstitial-free: microstructural evolution and mechanical properties. Mater Sci Eng A. 2011;528:6573-83.
  • 20. Kamikawa N, Sakai T, Tsuji N. Effect of redundant shear strain on microstructure and texture evolution during accumulative roll-bonding in ultralow carbon IF steel. Act Mater. 2007;55:5873-88.
  • 21. Eddahbi M, Rauch EF. Texture and microstructure of ultra-low carbon steel processed by equal channel angular extrusion. Mater Sci Eng A. 2009;502:13-24.
  • 22. Tsuji N, Ueji R, Minamino Y. Nanoscale crystallographic analysis of ultrafine grained IF steel fabricated by ARB process. Scr Mater. 2002;47:69-76.
  • 23. Michenka V, Rusz S, Gottwald M, Malanik K, Kedron J, Tylsar S. Evaluation of DRECE forming process of Cu-based alloys and proposal of testing method for evaluation of UFG materials microstructural stability. Trans VSB Tech Univ Ostrava Mech Ser. 2010;2:1791-9.
  • 24. Brodova IG, Shirinkina IG, Antonova OA, Shorokhov EV, Zhgilev I. Formation of a submicrocrystalline structure upon dynamic deformation of aluminum alloys. Mater Sci Eng A. 2009;503:103-5.
  • 25. Xu H, Schroeder S, Bebron PB, Langdon TG. Principles of ECAP-Conform as a continuous process for achieving grain refinement: application to an aluminum alloy. Acta Mater. 2010;58:1379-86.
  • 26. Verlinden B. Severe plastic deformation of metals. Association of Metallurgical Engineers Serbia and Montenegro Scientific paper AME DC:669.01.620.174/.175=20 MJOM Metalurgija J Met 165-182.
  • 27. Jabłońska MB, Kowalczyk K, Tkocz M, Bulzak T. Dual rolls equal channel extrusion as unconventional SPD process of the ultralow-carbon steel: finite element simulation, experimental investigations and microstructure analysis. Arch Civ Mech Eng. 2021. https://doi.org/10.1007/s43452-020-00166-3.
  • 28. Lin HP, Ng TS, Kuo CJ, Chen YC, Chen CL, Ding SX. EBSD study on crystallographic texture and microstructure development of cold-rolled FePd alloy. Mater Charact. 2014;93:163-72.
  • 29. Brandstetter S, Derlet PM, Van Petegem S, Van Swygenhoven H. Williamson-Hall anisotropy in nanocrystalline matals: X-ray diffraction experiments and atomistic simulations. Acta Mater. 2008;56:165-76.
  • 30. Dhinwal SS, Toth LS. Effect of strain path change on texture and microstructure evolution in asymmetric rolled extra-low carbon steel. Mater Charact. 2020;169:578-91.
  • 31. Zavdoveev A, Pashinska E, Dobatkin S, Varyukhin V, Belousov N, Maksakova A, Glazunov F. Structure and properties of low-carbon steel after twist extrusion. Emerg Mater Res. 2015;4:89-93.
  • 32. Rodak K, Urbańczyk-Gucwa A, Jabłońska MB. Microstructure and properties CuCr0.6 and CuFe2 alloys after rolling with the cyclic movement of rolls. Arch Civ Mech Eng. 2018;18:500-7.
  • 33. Nalepa K, Skoczeń B, Ciepielowska M, Schmidt R, Tabin J, Schmidt E, Zwolińska-Faryj W, Chulist R. Austenitic steel induced by fracture at cryogenic temperatures: experiment and modelling. Mater. 2021;127:127-34.
  • 34. Beyerlein IJ, Toth LS. Texture evolution in equal channel angular extrusion. Prog Mater Sci. 2009;54:427-510.
  • 35. Jabłońska MB, Kowalczyk K, Tkocz M, Chulist R, Rodak K, Bednarczyk I, Cichański A. The effect of severe plastic deformation on the IF steel properties, evolution of structure and crystallographic texture after dual rolls equal channel extrusion deformation. Arch Civ Mech Eng. 2021. https://doi.org/10.1007/s4352-021-00303-6.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-cd6daa08-70a0-44f3-9834-df5cd1059360
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.