Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2024 | Vol. 72, no. 2 | 999--1016
Tytuł artykułu

Estimation of monthly evaporation values using gradient boosting machines and mode decomposition techniques in the Southeast Anatolia Project (GAP) area in Turkey

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Today, the biggest issue appears to be the increase in drought in some regions brought on by global warming, which has greatly increased the significance of water management. In light of evaporation's effect on drought, this research intends to evaluate the effectiveness of hybrid machine learning (ML) models, such as the Gradient Boosting Machines (GBM) technique paired with Empirical Mode Decomposition (EMD), Robust Empirical Mode Decomposition (REMD), Ensemble Empirical Mode Decomposition (EEMD), and Variational Mode Decomposition (VMD) signal decomposition techniques, for monthly evaporation prediction models in the Southeast Anatolia Project Area. In the design of the models, 80% of the data was used for training and 20% for testing. Furthermore, tenfold cross-validation was applied to solve the overfitting problem, which negatively affected the forecast performance. In the model setup, various combinations of precipitation, average air temperature, minimum air temperature, maximum air temperature, wind speed, actual air pressure, relative humidity, and solar time variables are presented to artificial intelligence models as input. The study revealed that the GBM methodology in combination with the signal decomposition methods REMD, EMD, EEMD, and VMD generally allowed for more accurate evaporation estimations than the GBM model alone. The study’s results are essential in relation to agricultural production, irrigation planning, water resources management studies, and hydrological modeling studies in the region.
Wydawca

Czasopismo
Rocznik
Strony
999--1016
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
  • Design Department, Erzincan Uzumlu Vocational School, Erzincan Binali Yildirim University, Erzincan, Türkiye
  • Faculty of Engineering and Architecture, Department of Civil Engineering, Erzincan Binali Yildirim University, Erzincan, Türkiye, okatipoglu@erzincan.edu.tr
Bibliografia
  • 1. Ali Ghorbani M, Kazempour R, Chau KW, Shamshirband S, Taherei Ghazvinei P (2018) Forecasting pan evaporation with an integrated artificial neural network quantum-behaved particle swarm optimization model: a case study in Talesh, Northern Iran. Eng Appl Comput Fluid Mech 12(1):724-737. https://doi.org/10.1080/ 19942060.2018.1517052
  • 2. Al-Mukhtar M (2021) Modeling of pan evaporation based on the development of machine learning methods. Theoret Appl Clima-tol 146(3):961-979. https://doi.org/10.1007/s00704-021-03760-4
  • 3. Antonopoulos VZ, Antonopoulos AV (2017) Daily reference evapotranspiration estimates by artificial neural networks technique and empirical equations using limited input climate variables. Com-put Electron Agric 132:86-96. https://doi.org/10.1016/j.compag. 2016.11.011
  • 4. Asante-Okyere S, Shen C, Ziggah YY, Rulegeya MM, Zhu X (2020) A novel hybrid technique of integrating gradient-boosted machine and clustering algorithms for lithology classification. Nat Resour Res 29(4):2257-2273. https://doi.org/10.1007/ s11053-019-09576-4
  • 5. Başakin EE, Ekmekcioğlu Ö, Özger M (2021) Drought prediction using hybrid soft-computing methods for semi-arid region. Model Earth Syst Environ 7(4):2363-2371. https://doi.org/10.1007/ s40808-020-01010-6
  • 6. Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE). Geosci Model Develop Discuss 7(1):1525-1534. https://doi.org/10.5194/gmd-7-1247-2014,2014
  • 7. Dalkiliş Y, Okkan U, Baykan N (2014) Comparison of different ANN approaches in daily pan evaporation prediction. J Water Resour Protection. https://doi.org/10.4236/jwarp.2014.64034
  • 8. Dazzi S, Vacondio R, Mignosa P (2021) Flood stage forecasting using machine-learning methods: a case study on the Parma River (Italy). Water 13(12):1612. https://doi.org/10.3390/w13121612
  • 9. Dehghani R, Torabi Poudeh H, Izadi Z (2022) Dissolved oxygen concentration predictions for running waters with using hybrid machine learning techniques. Model Earth Syst Environ 8(2):2599-2613. https://doi.org/10.1007/s40808-021-01253-x
  • 10. Dehghanipour MH, Karami H, Ghazvinian H, Kalantari Z, Dehgha-nipour AH (2021) Two comprehensive and practical methods for simulating pan evaporation under different climatic conditions in Iran. Water 2021(13):2814. https://doi.org/10.3390/w13202814
  • 11. Feng Y, Jia Y, Zhang Q, Gong D, Cui N (2018) National-scale assessment of pan evaporation models across different climatic zones of China. J Hydrol 564:314-328. https://doi.org/10.1016/j.jhydr ol.2018.07.013
  • 12. Gap.gov (2022) http://www.gap.gov.tr/gap-nedir-sayfa-1.html (Recived:07.12.2022)
  • 13. Gümüş V, Şimşek O, Soydan NG, Aköz MS, Yenigün K (2016) Adana istasyonunda buharlaşmanin farkli yapay zeka yöntemleri ile tahmini. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi 7(2):309-318
  • 14. Gümüş V, Yeşiltaş Y, Şimşek O (2021) Yapay Zekâ Yöntemleri ile Adiyaman ve Diyarbakir istasyonlarinin Aylik Tava Buharlaşmalarinin Tahmin Edilmesi. Türk Doğa ve Fen Dergisi 10(2):112-122. https://doi.org/10.46810/tdfd.893630
  • 15. Gundalia MJ, Dholakia MB (2013) Modelling pan evaporation using mean air temperature and mean pan evaporation relationship in middle south Saurashtra Region. Int J Water Resour Environ Eng 5(11):622-629. https://doi.org/10.5897/IJWREE2013.0426
  • 16. Jasmine M, Mohammadian A, Bonakdari H (2022) On the prediction of evaporation in arid climate using machine learning model. Math Comput Appl 27(2):32. https://doi.org/10.3390/mca27 020032
  • 17. Kedadouche M, Thomas M, Tahan AJMS (2016) A comparative study between Empirical wavelet transforms and Empirical mode decomposition methods: application to bearing defect diagnosis. Mech Syst Signal Process 81:88-107. https://doi.org/10.1016/j. ymssp.2016.02.049
  • 18. Liu Z, Peng D, Zuo MJ, Xia J, Qin Y (2022) Improved Hilbert-Huang transform with soft sifting stopping criterion and its application to fault diagnosis of wheelset bearings. ISA Trans 125:426-444. https://doi.org/10.1016/j.isatra.2021.07.011
  • 19. Lu X, Ju Y, Wu L, Fan J, Zhang F, Li Z (2018) Daily pan evaporation modeling from local and cross-station data using three tree-based machine learning models. J Hydrol 566:668-684. https://doi.org/ 10.1016/j.jhydrol.2018.09.055
  • 20. Malik A, Kumar A (2015) Pan evaporation simulation based on daily meteorological data using soft computing techniques and multiple linear regression. Water Resour Manage 29(6):1859-1872. https:// doi.org/10.1007/s11269-015-0915-0
  • 21. Malik A, Saggi MK, Rehman S, Sajjad H, Inyurt S, Bhatia AS, Yaseen ZM (2022) Deep learning versus gradient boosting machine for pan evaporation prediction. Eng Appl Comput Fluid Mech 16(1):570-587. https://doi.org/10.1080/19942060.2022.2027273
  • 22. Mohamadi S, Ehteram M, El-Shafie A (2020) Accuracy enhancement for monthly evaporation predicting model utilizing evolutionary machine learning methods. Int J Environ Sci Technol 17(7):3373-3396. https://doi.org/10.1007/s13762-019-02619-6
  • 23. Mosavi A, Ozturk P, Chau KW (2018) Flood prediction using machine learning models: literature review. Water 10(11):1536. https://doi. org/10.3390/w10111536
  • 24. Nhu VH, Shahabi H, Nohani E, Shirzadi A, Al-Ansari N, Bahrami S, Nguyen H (2020) Daily water level prediction of Zrebar Lake (Iran): a comparison between M5P, random forest, random tree and reduced error pruning trees algorithms. ISPRS Int J Geo-Inf 9(8):479. https://doi.org/10.3390/ijgi9080479
  • 25. Pammar L, Deka PC (2017) Daily pan evaporation modeling in climatically contrasting zones with hybridization of wavelet transform and support vector machines. Paddy Water Environ 15(4):711-722. https://doi.org/10.1007/s10333-016-0571-x
  • 26. Pardo S, Dunne N, Simmons DA (2017) Using radar plots to demonstrate the accuracy and precision of 6 blood glucose monitoring systems. J Diabetes Sci Technol 11(5):966-969. https://doi.org/ 10.1177/19322968177130
  • 27. Rezaie-Balf M, Kisi O, Chua LH (2019) Application of ensemble empirical mode decomposition based on machine learning methodologies in forecasting monthly pan evaporation. Hydrol Res 50(2):498-516. https://doi.org/10.2166/nh.2018.050
  • 28. Vicente-Serrano SM, Bidegain M, Tomas-Burguera M, Dominguez-Castro F, El Kenawy A, McVicar TR, Giménez A (2018) A comparison of temporal variability of observed and model-based pan evaporation over Uruguay (1973-2014). Int J Climatol 38(1):337-350. https://doi.org/10.1002/joc.5179
  • 29. Wang Y, Markert R (2016) Filter bank property of variational mode decomposition and its applications. Signal Process 120:509-521. https://doi.org/10.1016/j.sigpro.2015.09.041
  • 30. Wang L, Kisi O, Hu B, Bilal M, Zounemat-Kermani M, Li H (2017) Evaporation modelling using different machine learning techniques. Int J Climatol 37:1076-1092. https://doi.org/10.1002/ joc.5064
  • 31. Wu Z, Huang NE, Chen X (2009) The multi-dimensional ensemble empirical mode decomposition method. Adv Adapt Data Anal 1(03):339-372. https://doi.org/10.1142/S1793536909000187
  • 32. Wu L, Huang G, Fan J, Ma X, Zhou H, Zeng W (2020) Hybrid extreme learning machine with meta-heuristic algorithms for monthly pan evaporation prediction. Comput Electron Agric 168:105115. https://doi.org/10.1016/j.compag.2019.105115
  • 33. Yaseen ZM, Al-Juboori AM, Beyaztas U, Al-Ansari N, Chau KW, Qi C, Shahid S (2020) Prediction of evaporation in arid and semiarid regions: a comparative study using different machine learning models. Eng Appl Comput Fluid Mech 14(1):70-89. https://doi. org/10.1080/19942060.2019.1680576
  • 34. Zare M, Koch M (2013) An Analysis of MLR and NLP for use in river flood routing and comparison with the Muskingum method. IAHR World Congress
  • 35. Zhang J, Yan R, Gao RX, Feng Z (2010) Performance enhancement of ensemble empirical mode decomposition. Mech Syst Signal Process 24(7):2104-2123. https://doi.org/10.1016/j.ymssp.2010. 03.003
  • 36. Zounemat-Kermani M, Matta E, Cominola A, Xia X, Zhang Q, Liang Q, Hinkelmann R (2020) Neurocomputing in surface water hydrology and hydraulics: A review of two decades retrospective, current status and future prospects. J Hydrol 588:125085. https:// doi.org/10.1016/j.jhydrol.2020.125085
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-cd625aa4-9543-4849-907c-86f853e38b4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.