Czasopismo
2017
|
Vol. 21, nr 2
|
363--377
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The present work aims to investigate a penny-shaped crack problem in the interior of a homogeneous elastic material at the symmetry plane, under an axisymmetric torsion by two circular rigid discs symmetrically located in the elastic medium. The two discs rotate with the same angle in the different direction about the axis passing through their centers. The general solution of this problem is obtained by using the Hankel transforms method. The corresponding doubly mixed boundary value problem associated with the rigid disc and the penny-shaped is reduced to a system of dual integral equations, which are transformed, to a Fredholm integral equations of the second kind. Using the quadrature rule, the resulting system is converted to a system of infinite algebraic equations. The variation in the displacement, stress and stress intensity factor are presented for some particular cases of the problem.
Czasopismo
Rocznik
Tom
Strony
363--377
Opis fizyczny
Bibliogr. 17 poz., 1 rys., wykr.
Twórcy
autor
- Department of Mechanical Engineering, Ecole Natioanle Polytechnique, El-Harrach, Algiers, Algeria, madanifateh1984@yahoo.com
autor
- Department of Mechanical Engineering, Ecole Natioanle Polytechnique, El-Harrach, Algiers, Algeria, belkacem.kebli@g.enp.edu.dz
Bibliografia
- [1] Reissner, E. and Sagoci, H. F.: Forced torsion oscillation of an half-space I, Int. J. Appl. Phys., 15, 652-654, 1944.
- [2] Sneddon, I. N.: Note on a boundary value problem of Reissner and Sagoci, Int. J. Appl. Phys., 18, 130-132, 1947.
- [3] Collins, W. D.: The forced torsional oscillations of an elastic halfspace and an elastic stratum, Pro. London. Math. Society, 12, 226-244, 1962.
- [4] Gladwell, G. M. L.: The forced torsional vibration of an elastic stratum, Int. J. Eng. Sci., 7, 1011-1024, 1969.
- [5] Noble, B.: The solution of Bessel function dual integral equations by a multiplying factor method, Pro. Camb. Eng. Sci., 59, 351-362, 1963.
- [6] Pak, R. Y. S. and Saphores, J. D. M.: Torsion of a rigid disc in a half-space, Int. J. Engng Sci., 29, 1-12, 1991.
- [7] Bacci, A. and Bennati, S.: An approximate explicit solution for the local torsion of an elastic layer, Mech. Struct. Mach., 24, 21-38, 1996.
- [8] Singh, B. M., Danyluk, H. T., Vrbik ,J., Rokne, J. and Dhaliwal, R. S.: The Reissner-Sagoci Problem for a Non-homogeneous Half-space with a Surface Constraint, Meccanica, 38, 453-465, 2003.
- [9] Guo-cai, W. and Long-zhu, C. J.: Torsional oscillations of a rigid disc bonded to multilayered poroelastic medium, Int. Zheijang. Univ. Sci., 6, 3, 213-221, 2005.
- [10] Yu, H. Y.: Forced torsional oscillations of multilayered solids, Int. J. Eng. Sci., 46, 250-259, 2008.
- [11] Pal, P. C., Mandal, D. and Sen, B.: Torsional Oscillations of a Rigid Disc Embedded in a Transversely Isotropic Elastic Half-Space, Adv. Theor. Appl. Mech., 4, 177-188, 2011.
- [12] Ahmadi, S. F. and Eskandari, M.: Rocking rotation of a rigid disk embedded in a transversely isotropic half-space, Civil Eng. Infra. J., 47, 125-138, 2014.
- [13] Sih, G. C. and Chen, E. P.: Torsion of a laminar composite debonded over a penny-shaped area, J. Franklin Inst., 293, 251-261, 1972.
- [14] Low, R. D.: On the torsion of elastic half space with embedded penny-shaped flaws, J. Appl. Mech., 39, 786-790, 1972.
- [15] Dhawan, G. K.: On the torsion of elastic half-space with penny-shaped crack, Defense. Sci. J., 24, 15-22, 1974.
- [16] Basu, S. and Mandal, S. C.: Impact of Torsional Load on a Penny-Shaped Crack in an Elastic Layer Sandwiched Between Two Elastic Half-Space, Int. J. Appl. Comput. Math , 2, 533-543, 2016.
- [17] Debnath, L., Bhatta, D.: Integral transforms and their applications, Chapman Hall, CRC, 2007.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-cd4f769b-50ae-4768-a1b5-e9ac58f0cde2