Warianty tytułu
Języki publikacji
Abstrakty
The change of spontaneous curvature of nonionic surfactants is related to temperature. The phase inversion of the emulsion system is induced by temperature change, which is called phase inversion temperature method. Experiments were carried out in which Ceteareth-12 (Alkyl polyglycol ether C16-18) and Ceteareth-20 (Alkyl polyglycol ether C16-18) were used as hydrophilic emulsifiers and fatty alcohol as lipophilic emulsifiers. It was found that the increase of HLB value of hydrophilic emulsifier, the decrease of fatty alcohol content or the increase of carbon atom number of fatty alcohol led to the increase of phase inversion temperature of the system. The experimental results also showed that when the hydrophilicity of emulsifier system was enhanced, the second phase inversion would be more obvious. The phase inversion temperature of ester oils is generally higher than that of alkane oils.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
64--71
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wz.
Twórcy
autor
- Shanghai Institute of Technology Shanghai, PR China
autor
- Shanghai Institute of Technology Shanghai, PR China
autor
- Shanghai Institute of Technology Shanghai, PR China
autor
- Shanghai Institute of Technology Shanghai, PR China
autor
- Shanghai Institute of Technology Shanghai, PR China, gyz@sit.edu.cn
Bibliografia
- 1. McClements, D.J. (2012). Nanoemulsions versus micro-emulsions: terminology, differences, and similarities. Soft Matter. 8, 1719–1729. DOI: 10.1039/c2sm06903b.
- 2. Gupta, P.K., Bhandari, N., Shah, H.N., Khanchandani, V., Keerthana, R., Nagarajan, V. & Hiremath, L. (2018). An Update on Nanoemulsions Using Nanosized Liquid in Liquid Colloidal Systems. In Nanoemulsions – Properties, Fabrications and Applications (pp. 1–16). DOI: 10.5772/intechopen.84442.
- 3. Gupta, A., Eral, H.B., Hatton, T.A. & Doyle, P.S. (2016). Nanoemulsions: formation, properties and applications. Soft Matter. 12, 2826–2841. DOI: 10.1039/c5sm02958a.
- 4. Lefebvre, G., Riou, J., Bastiat, G., Roger, E., Frombach, K., Gimel, J.-C., Saulnier, P. & Calvignac, B. (2017). Spontaneous nano-emulsification: Process optimization and modeling for the prediction of the nanoemulsion’s size and polydispersity. Int. J. Pharm. 534, 220–228. DOI: 10.1016/j.ijpharm.2017.10.017.
- 5. Solans, C. & Solé, I. (2012). Nano-emulsions: Formation by low-energy methods. Curr. Opin. Colloid In. Sci. 17, 246–254. DOI: 10.1016/j.cocis.2012.07.003.
- 6. Wennerström, H., Balogh, J. & Olsson, U. (2006). Inter-facial tensions in microemulsions. Colloid. Surf. A 291, 69–77. DOI: 10.1016/j.colsurfa.2006.09.027.
- 7. Sagitani, H., Hattori, T., Nabeta, K. & Nagai AGAI, M. (1983). Formation of O/W Emulsion Having Fine and Uniform Droplets by the Surfactant (D) Phase Emulsification Method. NIPPON KAGAKU KAISHI, 10, 1399–1404. DOI: 10.1246/nikkashi.1983.1399.
- 8. Smith, D.H. (1985). The Role of Critical Points and Binodal Surfaces in Emulsion Type, HLB, and the Phase Inversion Temperature: Evidence from the Cyclohexane/Water/i-CoH1gC HA(OC,HA)g OH/Temperature Diagram. J. Colloid Interf. Sci. 108, 471–483. DOI: 10.1016/0021-9797(85)90287-5.
- 9. Mashhadi, S., Javadian, H., Tyagi, I., Agarwal, S. & Gupta, V.K. (2016). The effect of Na2SO4 concentration in aqueous phase on the phase inversion temperature of lemon oil in water nano-emulsions. J. Mol. Liq. 215, 454–460. DOI: 10.1016/j.molliq.2016.01.045.
- 10. Su, D. & Zhong, Q. (2016). Lemon oil nanoemulsions fabricated with sodium caseinate and Tween 20 using phase inversion temperature method. J. Food Eng. 171, 214–221. DOI: 10.1016/j.jfoodeng.2015.10.040.
- 11. Jia, H., Chen, L., Jia, B. & Zhang, W. (2015). Factors Affecting the Phase-Inversion Temperature of Fatty Alcohol Ethoxylates. J. Disper. Sci. Technol. 37, 687–692. DOI: 10.1080/01932691.2015.1055759.
- 12. Jintapattanakit, A. (2018). Preparation of nanoemulsions by phase inversion temperature (PIT) method. Pharmac. Sci. Asia 45,1–12.
- 13. Morales, D.N., Gutiérrez, J.M., García-Celma, M.J. & Solans, Y.C. (2003). A study of the relation between bicontinuous microemulsions and oil-water nano-emulsion formation. Langmuir, 19, 7196–7200. DOI: 10.1021/la0300737.
- 14. Anton, N., Gayet, P., Benoit, J.P. & Saulnier, P. (2007). Nano-emulsions and nanocapsules by the PIT method: an investigation on the role of the temperature cycling on the emulsion phase inversion. Int. J. Pharmaceut. 344, 44–52. DOI: 10.1016/j.ijpharm.2007.04.027.
- 15. Anton, N., Benoit, J.P. & Saulnier, P. (2008). Particular conductive behaviors of emulsion phase inverting. J. Drug Deliv. Sci. Tec. 18, 95–99. DOI: 10.1016/s1773-2247(08)50015-3.
- 16. Pham, D.H. & Nguyen, T.T. (2020). Preparation of Tamanu Oil Nanoemulsions by Phase Inversion Temperature. IOP Conf. Ser.: Mater. Sci. Eng. 991, 012116. DOI: 10.1088/1757-899X/991/1/012116.
- 17. Rao, J. & McClements, D.J. (2011). Formation of flavor oil microemulsions, nanoemulsions and emulsions: influence of composition and preparation method. J. Agric. Food Chem. 59, 5026–5035. DOI: 10.1021/jf200094m.
- 18. Calligaris, S., Valoppi, F., Barba, L., Pizzale, L., Anese, M., Conte, L. & Nicoli, M.C. (2016). Development of Transparent Curcumin Loaded Microemulsions by Phase Inversion Temperature (PIT) Method: Effect of Lipid Type and Physical State on Curcumin Stability. Food Biophys. 12, 45–51. DOI: 10.1007/s11483-016-9461-4.
- 19. Mei, Z., Xu, J. & Sun, D. (2011). O/W nano-emulsions with tunable PIT induced by inorganic salts. Colloid. Surface. A 375, 102–108. DOI: 10.1016/j.colsurfa.2010.11.069.
- 20. Okamoto, T., Tomomasa, S. & Nakajima, H. (2016). Preparation and Thermal Properties of Fatty Alcohol/Surfactant/Oil/Water Nanoemulsions and Their Cosmetic Appl. J. Oleo. Sci. 65, 27–36. DOI: 10.5650/jos.ess15183.
- 21. Forgiarini, A.M., Esquena, J., Azon, C.G. & Solans, C. (2001). Formation of Nano-emulsions by Low-Energy Emulsification Methods at Constant Temperature. Langmuir 17, 2076–2083. DOI: 10.1021/la001362n.
- 22. Yuli, I., Libster, D., Aserin, A. & Garti, N. (2009). Solubilization of food bioactives within lyotropic liquid crystalline mesophases. Curr. Opin. Colloid In. Sci. 14, 21–32. DOI: 10.1016/j.cocis.2008.02.001.
- 23. Shinoda, K. & Arai, H. (1964). The Correlation between Phase Inversion Temperature in Emulsion and Cloud Point in Solution of Nonionic Emulsifier. J. Phys. Chem. 68, 3485–3490. DOI: 10.1021/j100794a007.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-cd15e26e-4277-49fb-8427-c16985bccd51