Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 31, nr 2 | 177--192
Tytuł artykułu

Implementation of decision support system for ecological environment planning of urban green space

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As a highly concentrated residential area, urban development and population concentration have caused serious environmental pollution problems that threaten the safety of the water and atmospheric resources that humans rely on for survival. To address this issue, the importance of urban green space (UGS) has become increasingly prominent. This paper collected data related to UGS (green space coverage, vegetation type, environmental quality, population distribution, etc.) for processing, used the entropy algorithm to build an ecological environment assessment model, and then used the particle swarm optimisation algorithm to optimise the model accordingly. Finally, a decision support system was proposed for UGS ecological environment planning, which comprehensively considered future environmental changes. Through comparison before and after the application of decision support system, this paper tested and verified several indicators such as green space coverage, biological diversity index, and climate adaptability. Among them, after the application of the decision support system, the green space coverage rate has increased year by year, and many indicators in the biological diversity index have improved significantly. The average climate adaptability of traditional UGS planning was 70 %, while the average climate adaptability of decision support system green space planning was 90 %, which has been significantly improved. The outcome shows that the system has a notable effect in improving the climate adaptation and ecological quality of the city.
Wydawca

Rocznik
Strony
177--192
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Business Administration, Shanghai Urban Construction Vocational College, Shanghai 201415, China, fengsijing2013@126.com
Bibliografia
  • [1] Sun Y, Xie S, Zhao S. Valuing urban green spaces in mitigating climate change: A city - wide estimate of aboveground carbon stored in urban green spaces of China’s capital. Global Change Biol. 2019;25(5):1717-32. DOI: 10.1111/gcb.14566.
  • [2] Wang H, Dai X, Wu J. Influence of urban green open space on residents’ physical activity in China. BMC Public Health. 2019;19(1):1-12. DOI: 10.1186/s12889-019-7416-7.
  • [3] Li S, Fan Z. Evaluation of urban green space landscape planning scheme based on PSO-BP neural network model. Alexandria Eng J. 2022;61(9):7141-53. DOI: 10.1016/j.aej.2021.12.057.
  • [4] Li L, Zheng Y, Ma S. Links of urban green space on environmental satisfaction: A spatial and temporarily varying approach. Environ Development Sust. 2023;25(4):3469-501. DOI: 10.1007/s10668-022-02175-z.
  • [5] Guo H, Sun Y, Wang Q. Construction of greenspace landscape ecological network based on resistance analysis of GeoDetector in Jinan. Stochastic Environmental Res Risk Assess. 2023;37(2):651-63. DOI: 10.1007/s00477-022-02296-x.
  • [6] Oscilowicz E, Anguelovski I, Triguero-Mas M. Green justice through policy and practice: a call for further research into tools that foster healthy green cities for all. Cities Health. 2022;6(5):878-93. DOI: 10.1080/23748834.2022.2072057.
  • [7] Ouzir M, Khalfallah B, Dehimi S. Quantitative and qualitative assessment of urban green spaces in Boussaada City, Algeria using remote sensing techniques. J Geography Regional Planning. 2021;14(3):123-33. DOI: 10.5897/JGRP2021.0831.
  • [8] Filak M, Hoffman S. Benzo(a)pyrene in PM10 - Air monitoring results in Poland. Ecol Chem Eng S. 2023;30(4):557-65. DOI: 10.2478/eces-2023-0048.
  • [9] Jiang L. Environmental benefits of green buildings with BIM technology. Ecol Chem Eng S. 2023;30(2):191-9. DOI: 10.2478/eces-2023-0019.
  • [10] Tekouabou SCK, Diop EB, Azmi R. Reviewing the application of machine learning methods to model urban form indicators in planning decision support systems: Potential, issues and challenges. J King Saud University-Computer Information Sci. 2022;34(8):5943-67. DOI: 10.1016/J.JKSUCI.2021.08.007.
  • [11] Deveci M, Mishra AR, Gokasar I. A decision support system for assessing and prioritizing sustainable urban transportation in metaverse. IEEE Trans Fuzzy Systems. 2022;31(2):475-84. DOI: 10.1109/TFUZZ.2022.3190613.
  • [12] Harlan T. Green development or greenwashing? A political ecology perspective on China’s green belt and road. Eurasian Geography Economics. 2021;62(2):202-26. DOI: 10.1080/15387216.2020.1795700.
  • [13] Deng X, Li J, Huang Y, Wang L. How is paradoxical leadership linked to exploratory innovation?: The mediating role of knowledge sharing and the moderating role of environmental dynamism. J Organizational End User Computing (JOEUC). 2023;35(1):1-14. DOI: 10.4018/JOEUC.326766.
  • [14] Garcia-Lamarca M, Anguelovski I, Cole H. Urban green boosterism and city affordability: For whom is the ‘branded’green city? Urban Studies. 2021;58(1):90-112. DOI: 10.1177/0042098019885330.
  • [15] Turo KJ, Gardiner MM. From potential to practical: conserving bees in urban public green spaces. Frontiers Ecology Environ. 2019;17(3):167-75. DOI: 10.1002/fee.2015.
  • [16] Marwan G. Natural ecological and environmental protection strategies based on biotechnology analysis. Nature Environ Protect. 2020;3 (1):1-9. DOI: 10.38007/NEP.2020.010301.
  • [17] Deng Y, Xie L, Xing C. Digital city landscape planning and design based on spatial information technology. Neural Computing Appl. 2022;34(12):9429-40. DOI: 10.1007/s00521-021-06377-w.
  • [18] Wang ZZ, Goh SH. A maximum entropy method using fractional moments and deep learning for geotechnical reliability analysis. Acta Geotechnica. 2022;17(4):1147-66. DOI: 10.1007/s11440-021-01326-2
  • [19] Seung-Bok C. Risk assessment of water pollution prevention and control based on entropy weight fuzzy comprehensive model. Water Pollut Prevention Control Project. 2020;1(1):20-9. DOI: 10.38007/WPPCP.2020.010103.
  • [20] Tavana M, Soltanifar M, Santos-Arteaga FJ. Analytical hierarchy process: Revolution and evolution. Annals Operations Res. 2023;326(2):879-907. DOI: 10.1007/s10479-021-04432-2.
  • [21] Nguyen TAV, Tucek D, Pham NT. Indicators for TQM 4.0 model: Delphi method and analytic hierarchy process (AHP) analysis. Total Qual Manage Business Excellence. 2023;34(1-2):220-34. DOI: 10.1080/14783363.2022.2039062.
  • [22] Mengfan W, Jianyong Z, Fei MEI. Research on influencing factors of distribution network reliability based on combination empowerment and improved grey correlation analysis. J Electrical Eng. 2022;17(1):41-8. DOI: 10.11985/2022.01.006.
  • [23] Olcese U. Coordinated development of urban development and natural protection environment based on machine learning. Nature Environ Protect. 2021;2(4):48-57. DOI: 10.38007/NEP.2021.020406.
  • [24] Caymaz GFY, Hamameh S. Evaluation of aesthetic, functional, and environmental effects on the design of urban open spaces: A case study of Istanbul Sishane Park, Turkey. J Contemp Urban Affairs. 2020;4(2):67-86. DOI: 10.25034/ijcua.2020.v4n2-7.
  • [25] Zhang JW. Harmonization of urban development and nature conservation environment based on machine learning. Nature Environ Protect. 2022;1(3):18-25. DOI: 10.38007/NEP.2022.030103.
  • [26] Sohail A. Genetic algorithms in the fields of artificial intelligence and data sciences. Annals Data Sci. 2023;10(4):1007-18. DOI: 10.1007/s40745-021-00354-9.
  • [27] Wu X. Analysis of environmental governance expense prediction reform with the background of artificial intelligence. J Organizational End User Computing (JOEUC). 2022;34(5):1-19. DOI: 10.4018/JOEUC.287874.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ccf817a5-cfb2-40b4-9003-fbb1f3f04d35
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.