Czasopismo
2017
|
Vol. 21, nr 1
|
105--116
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The governing equations of transversely isotropic dual-phase-lag two-temperature thermoelasticity are solved for the surface wave solutions. The particular solutions in the half-space satisfy the boundary conditions at a thermally insulated /isothermal stress-free surface of a half-space to obtain the frequency equation of the Rayleigh wave for the cases of coupled thermoelasticity, Lord and Shulman thermoelasticity and dual-phase-lag thermoelasticity. Some particular and special cases are obtained. The numerical values of the non-dimensional speed of the Rayleigh wave are computed and shown graphically against frequency, non-dimensional elastic constant and two-temperature parameter. The effects of frequency, two-temperature and dual-phase-lag are observed on the nondimensional speed of Rayleigh wave.
Czasopismo
Rocznik
Tom
Strony
105--116
Opis fizyczny
Bibliogr. 27 poz., wykr.
Twórcy
autor
- Department of Mathematics, Post Graduate Government College, Sector-11, Chandigarh - 160 011, India, bsinghgc11@gmail.com
autor
- Department of Mathematics, Maharishi Dayanand University, Rohtak - 124 001, Haryana, India
autor
- Department of Mathematics, Maharishi Dayanand University, Rohtak - 124 001, Haryana, India
Bibliografia
- [1] Biot, M. A.: Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 2, 240-253 1956.
- [2] Green, A. E. and Lindsay, K. A.: Thermoelasticity, J. Elasticity, 2, 1-7, 1972.
- [3] Lord, H. and Shulman, Y.: A generalised dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15, 299-309, 1967.
- [4] Ignaczak, J. and Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds, Oxford University Press, 2009.
- [5] Hetnarski, R. B. and Ignaczak, J.: Generalized thermoelasticity, J. Thermal Stresses, 22, 451-476 1999.
- [6] Tzou, D.Y.: A unified approach for heat conduction from macro to micro-scales, J. Heat Transfer, 117, 8-16 1995.
- [7] Tzou, D.Y.: Experimental support for the lagging behavior in heat propagation, J. Thermophys., Heat Transfer, 9, 686-693, 1995.
- [8] Tzou, D.Y.: Macro- to microscale heat transfer: The lagging behavior, Washington, DC: Taylor and Francis, 1996.
- [9] Gurtin, M. E. and Williams, W. O.: On the Clausius-Duhem Inequality, Zeitschrift fr Angewandte Mathematik und Physik, 17, 626-633, 1966.
- [10] Gurtin, M. E. and Williams, W. O.: An Axiomatic Foundation/or Continuum Thermodynamics, Arch. Ration. Mech. Analysis, 26, 83-117, 1967.
- [11] Chen, P. J. and Gurtin, M. E.: On a theory of heat conduction involving two- temperatures, Zeitschrift fr Angewandte Mathematik und Physik, 19, 614-627, 1968.
- [12] Chen, P. J., Gurtin, M. E. and Williams, W. O.: A note on non-simple heat conduction, Zeitschrift fr Angewandte Mathematik und Physik, 19, 969-970 1968.
- [13] Chen, P. J., Gurtin, M. E. and Williams, W. O.: On the thermodynamics of non-simple elastic materials with two temperatures, Zeitschrift fr Angewandte Mathematik und Physik, 20, 107-112 1969.
- [14] Boley, B. A. and Tolins, I. S.: Transient coupled thermoplastic boundary value problems in the half-space, J. Appl. Mech., 29, 637-646 1962.
- [15] Warren, W. E. and Chen, P. J.: Wave propagation in the two-temperature theory of thermoelasticity, Acta Mech., 16, 21-33, 1973.
- [16] Puri, P. and Jordan, P. M.: On the propagation of harmonic plane waves under the two-temperature theory, Int. J. Engng. Sci., 44, 1113-1126, 2006.
- [17] Youssef, H. M.: Theory of two-temperature generalized thermoelasticity, IMA J. Appl. Math., 71, 383-390, 2006.
- [18] Kumar, R. and Mukhopadhyay, S.: Effects of thermal relaxation time on plane wave propagation under two-temperature thermoelasticity, Int. J. Engng. Sci., 48, 128-139, 2010.
- [19] Youssef, H. M.: Theory of two-temperature thermoelasticity without energy dissipation, J. Thermal Stresses, 34, 138-146, 2011.
- [20] Lockett, F. J.: Effect of the thermal properties of a solid on the velocity of Rayleigh waves, J. Mech. Phys. Solids, 7, 71-75, 1958.
- [21] Chandrasekharaiah, D. S. and Srikantaiah, K. R.: On temperature rate dependent thermoelastic Rayleigh waves in half-space, Gerlands Beitrage Zur Geophysik, 93, 133-141 1984.
- [22] Wojnar, R.: Rayleigh waves in thermoelasticity with relaxation times, In International Conference on Surface Waves in Plasma and Solids, Yugoslavia, World Scientific, Singapore, 1985.
- [23] Dawn, N. C. and Chakraborty, S. K.: On Rayleigh waves in Green-Lindsay model of generalized thermoelastic media, Indian J. Pure Appl. Math., 20, 276-283 1988.
- [24] Abouelregal, A. E.: Rayleigh waves in a thermoelastic solid half space using dual- phase-lag model, Int. J. Engng. Sci., 49, 781-791, 2011.
- [25] Singh, B.: Propagation of Rayleigh wave in a two-temperature generalized thermoelastic solid half-space, ISRN Geophysics, 2013, ID 857937, doi:10.1155/2013/857937, 2013.
- [26] Singh, B. and Bala, K.: On Rayleigh Wave in two-temperature generalized thermoelastic medium without energy dissipation, Applied Mathematics, 4, 107-112, 2013.
- [27] Chadwick, P. and Seet, L. T. C.: Wave propagation in a transversely isotropic heat conducting elastic material, Mathematica, 17, 255-274, 1970.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ccf7c957-4642-4eab-8b5b-500651b78fb0