Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 23, nr 3 | 359--371
Tytuł artykułu

Reliability of Pulse Measurements in Videoplethysmography

Treść / Zawartość
Warianty tytułu
Języki publikacji
Reliable, remote pulse rate measurement is potentially very important for medical diagnostics and screening. In this paper the Videoplethysmography was analyzed especially to verify the possible use of signals obtained for the YUV color model in order to estimate the pulse rate, to examine what is the best pulse estimation method for short video sequences and finally, to analyze how potential PPG-signals can be distinguished from other (e.g. background) signals. The presented methods were verified using data collected from 60 volunteers.

Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr., wzory
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Narutowicza 11/12, 80-233 Gdańsk, Poland,
  • [1] Humphreys, K., Markham, Ch., Ward, T.E. (2005). A CMOS camera-based system for clinical photoplethysmographic applications. Proc. SPIE, 5823, 88-95.
  • [2] Verkruysse, W., Svaasand, L.O., Nelson, J.S. (2008). Remote plethysmographic imaging using ambient light. Optics Express, 16(26), 21434-21445.
  • [3] Poh, M.Z., McDuff, D.J., Picard, R.W. (2010). Non- contact, automated cardiac pulse measurements using video imaging and blind source separation. Optics Express, 18,10762-10774.
  • [4] Christinaki, E., Giannakakis, G., Chiarugi, F., Pediaditis, M., Iatraki, G., Manousos, D., Marias, K., Tsiknakis, M. (2014). Comparison of blind source separation algorithms for optical heart rate monitoring. Proc. of Mobihealth Conference, 339-342.
  • [5] Mannapperuma, K., Holton, B.D., Lesniewski, P.J., Thomas, J.C. (2015). Performance limits of ICA-based heart rate identification techniques in imaging photoplethysmography. Physiol Meas., 36(1), 67-83.
  • [6] Lewandowska, M., Ruminski, J., Kocejko, T., Nowak, J. (2011), Measuring pulse rate with a webcam − A non-contact method for evaluating cardiac activity. Proc. of FedCSIS Conference, IEEE Xplore, 405-410.
  • [7] Smart Glasses Portal. (2015).
  • [8] Evena Medical. (2014).
  • [9] Ruminski, J., Bujnowski, A., Wtorek, J., Andrushevich, A., Biallas, M., Kistler, R. (2014). Interactions with recognized objects. Proc. of HSI 2014 Conference, IEEE Xplore, 101-105.
  • [10] Ruminski, J., Smiatacz, M., Bujnowski, A., Andrushevich, A., Biallas, M., Kistler, R. (2015). Interactions with recognized patients using smart glasses. Proc. of HSI 2015 Conference, IEEE Xplore, 187-194.
  • [11] Czuszynski, K., Ruminski, J. (2014). Interaction with medical data using QR-codes. Proc. of 7th HSI 2014 Conference, IEEE Xplore, 182-187.
  • [12] Kwasniewska, A., Klimiuk-Myszk, J., Ruminski, J., Forrier, J., Martin, B., Pecci, I. (2015). Quality of graphical markers for the needs of eyewear devices. Proc. of 8th HSI 2015 Conference, 388-395.
  • [13] Fuller, W.A. (1996). Introduction to Statistical Time Series. UK: John Wiley & Sons, Inc.
  • [14] Gävert, H., Hurri, J., Särelä, J., Hyvärinen, A. (2005). FastICA,
  • [15] Cardoso, J.F. (2005). Jade 1.8,
  • [16] Bach, F. (2002). Kernel ICA 1.2,
  • [17] Learned-Miller, E.G. (2004). RADICAL 1.2,
  • [18] Kay, S.M. (1988). Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice-Hall.
  • [19] Augustyniak, P. (2013). Coherence-based measure of instantaneous ECG noise. Computing in Cardiology Conference (CinC), 787-790.
  • [20] Clifford, G.D. (2006). ECG statistics, noise, artefacts and missing data. Chapter 3 in: Clifford G.D., Azuaje, F., McSharry, P.E. Advanced Methods and Tools for ECG Analysis, Artech House Publishing.
  • [21] Sörnmo, L., Laguna, P. (2005). Bioelectrical Signal Processing in Cardiac and Neurological Applications. Academic Press.
  • [22] Lopez, S. (2012). Pulse Oximeter Fundamentals and Design, Freescale Semiconductor, Application Note, Document Number: AN4327 Rev. 2.
  • [23] Iyriboz, Y., Powers, S., Morrow, J., Ayers, D., Landry G. (1991). Accuracy of pulse oximeters in estimating heart rate at rest and during exercise. British Journal of Sports Medicine, 25(3), 162-164.
  • [24] Oh, S.H., Lee, Y.R., Kim, H.N. (2014). A Novel EEG Feature Extraction Method Using Hjorth Parameter. International Journal of Electronics and Electrical Engineering, 2(2), 106-110.
  • [25] Deshmane, A.V. (2009). False arrhythmia alarm suppression using ECG, ABP, and photoplethysmogram. MS Thesis, MIT, USA.
  • [26] Xin, L., Yongfeng, R., Chengqun, C., Wei, W.F. (2015). Accurate Frequency Estimation Based On Three- Parameter Sine-Fitting With Three FFT Samples. Metrol. Meas. Syst., 22(3), 403-416.
  • [27] Smieszek, M., Dobrzanska, M. (2015). Application Of Kalman Filter In Navigation Process Of Automated Guided Vehicles. Metrol. Meas. Syst., 22(3), 443-454.
  • [28] Wuerz, R.C., Travers, D., Gilboy, N., Eitel, D.R., Rosenau, A., Yazhari, R. (2001). Implementation and refinement of the emergency severity index. Acad. Emerg. Med., 8(2), 170-176.
This work has been partially supported by NCBiR, FWF, SNSF, ANR and FNR within the framework of the ERA-NET CHIST-ERA II, European project eGLASSES – The interactive eyeglasses for mobile, perceptual computing and by Statutory Funds of Electronics, Telecommunications and Informatics Faculty, Gdansk University of Technology.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.