Warianty tytułu
Bakteryjna redukcja siarczanów jako odpowiednia metoda usuwania siarczanów z kwaśnych wód kopalnianych
Języki publikacji
Abstrakty
The aim of this work was to investigate of the sulfates removal from acid mine drainage (AMD) by biological method using sulfate-reducing bacteria (SRB). A sample of AMD out-flowing from the Pech shaft of the abandoned and flooded Smolník deposit in Slovak Republic was studied. The untreated AMD (with contents metals) and treated AMD i.e. after of the metals removing by the synthetic sorbent Slovakite were used. The base of the biological sulfates elimination was the sulfates bacterial reduction under influence of SRB genera Desulfovibrio. These bacteria realize the sulfates reduction to hydrogen sulfide at the simultaneously oxidation of energetic substrate. Standard selective nutrient medium DSM-63 and modified selective nutrient medium DSM-63 (without sulfates contents) with standard amount of sodium lactate (as energetic substrate) were used in the experiments with untreated AMD. Standard selective nutrient medium DSM-63 and modified selective nutrient medium DSM-63 with standard, double and triple amount of sodium lactate were used in the experiments with treated AMD. In the case of untreated AMD has been reached low removing of sulfates - 20% efficiency (standard medium) and 26% (modified medium). The formation of heterogeneous precipitates containing metals pointed to the need for treatment of AMD by the initial removal of metals by sorption on Slovakite sorbent and subsequent removal of sulfates by bacterial reduction. The results of experiments with AMD treated in this way showed 49%, 70% and 88% efficiency of sulfate removal when using sodium lactate in standard, double and triple amounts. The results of this work suggest that ratio of substrate quantity and sulfate concentration is one of the key parameter of sulfate reducing condition. However, the price of the energy substrate is also an important factor. Therefore, subsequent experiments will be focused on the use of the more affordable substrates (e.g. whey) or mixed bacterial culture of SRB, which will also be able to use the products of decomposition of basic energetic substrates.
Czasopismo
Rocznik
Tom
Strony
569--574
Opis fizyczny
Bibliogr. 14 poz., tab., wykr.
Twórcy
autor
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01 Košice, Slovakia, luptakal@saske.sk
autor
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01 Košice, Slovakia, macingova@saske.sk
autor
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01 Košice, Slovakia, jencarova@saske.sk
autor
- Technical University in Kosice, Civil Engineering Faculty, Vysokoškolská 4, 042 00 Košice, Slovakia, magdalena.balintova@tuke.sk
autor
- Technical University in Kosice, Faculty of Materilas, Metallurgy and Recycling, Letná 9, 042 00 Košice, Slovakia, adriana.cikotova@tuke.sk
autor
- Technical University in Kosice, Faculty of Materilas, Metallurgy and Recycling, Letná 9, 042 00 Košice, Slovakia
Bibliografia
- 1. INAP - International Network for Acid Prevention, 2003. Treatment of Sulphate in Mine Effluents, LORAX Environmental, Inc., 129 p.
- 2. B.J. Little and J.S. Lee, “Microbiologically Influenced Corrosion”. Wiley-Interscience A John Wiley & Sons, Inc., Publication, pp. 102, 2007.
- 3. S.R. Toleti, “Mineral Scales and Deposits: Biofouling in Industrial Water Systems”, Elsevier, pp. 123-140, 2015.
- 4. Ch. Wolkersdorfer, “Water Management at Abandoned Flooded Underground Mines. Fundamentals, Tracer Tests, Modelling, Water Treatment”, Springer; pp. 465, 2008.
- 5. D.B. Johnson and K.B. Hallberg, “The microbiology of acidic mine waters. Mini-review”. Research in Microbiology, 154, pp. 466-473 (2003).
- 6. Government Regulation No. 269/2010 of Slovak Body of Laws included general requirements for surface water quality in Slovak Republic.
- 7. J.M. Odom and J.R. Singleton, “The sulphate-reducing bacteria Contemporary Perspectives”. Springer-Verlag, New York, 1993.
- 8. A. H. Kaksonen, C. Morris, S. Rea, J. Li, J. Wylie, K. M. Usher, M. P. Ginige, K. Y. Cheng, F. Hilario and C. A. du Plessis,”Biohydrometallurgical iron oxidation and precipitation: Part I – Effect of pH on process performance,” Hydrometallurgy, 147-148, pp. 255-263, 2014.
- 9. A. Luptakova et al., ”Application of physical-chemical and biological-chemical methods for heavy metals removal from acid mine drainage”, Process Biochemistry, 47, no. 11, 1633-1639 (2012).
- 10. K. Tang et al., “Bacteria of the sulphur cycle: An overview of microbiology, biokinetics and their role in petroleum and mining industries”, Biochemical Engineering Journal, 44, 73-94 (2009).
- 11. M. Bálintová et al., “Sorption in Acidic Environment – Biosorbents in Comparison with Commercial Adsorbents”, Chemical Engineering Transaction, 39, 625-630 (2014).
- 12. J.R. Postgate, “The sulphate-reducing bacteria,“ Cambridge: Cambridge University Press, pp. 208, 1984.
- 13. A. Luptáková, M. Kušnierová, P. Fečko, “Minerálne biotechnológie II”. VŠB TU Ostrava, pp. 152 p, 2002.
- 14. W. Liamleam, A.P. Annachhatre, “Electron donors for biological sulfate reduction”, Biotechnology Advances, 25, 452-463 (2007).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-cc8a200c-617e-497b-be9a-218fe040a6d2