Czasopismo
2018
|
Vol. 94, nr 2
|
55--64
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: A review of the literature regarding the occurrence of fretting wear in orthodontics and its test methods have been presented. Design/methodology/approach: The influence of micro-movements occurring in the oral cavity on the occurrence of fretting wear in a fixed orthodontic appliance is discussed. The fretting test methods were analysed, taking into account tine shape of the samples and the amplitude of the movements, calculated according to the Hertz contact problem. Fretting-corrosion tests on tines wear of materials are included. Findings: Fretting occurs between the bracket and the orthodontic archwire in a fixed appliance. The test of the amount of wear material mainly uses samples created for the needs of the device. The test of ready-made components of a fixed appliance usually relate to the value of the coefficient of friction. The use of coatings increases the coefficient with the simultaneous reduction of the amount of wear material. Fretting-corrosion occurring in the oral environment has a negative impact on the wear of materials. The value of the total area of abraded material after fretting is unknown. Research limitations/implications: Particles of fretting wear
Rocznik
Tom
Strony
55--64
Opis fizyczny
Bibliogr. 62 poz.
Twórcy
autor
- Institute of Material Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland b Medical University of Lodz, ul. Pomorska 251, 92-231 Łódź, Poland, weronika.czepulkowska@p.lodz.pl
autor
- Institute of Material Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland b Medical University of Lodz, ul. Pomorska 251, 92-231 Łódź, Poland
Bibliografia
- [1] E. Kulesza, J.R. Dąbrowski, J. Siudyn, A. Neyman, J. Mizera, Fretting wear of materials - methodological aspects of research, Acta Mechanica et Automatica 6/3 (2012) 58-61.
- [2] R.W. Bruce, Handbook of lubrication and tribology, Volume II: Theory and Design, Second Edition, CRC Press, 2012, Available at: http://allaboutmetallurgy.com/ wp/wp-content/uploads/2017/08/Lubrication%20and%20Tribology%20I%20and%20II.pdf, Accessed: August 20,2018.
- [3] A. Cruzado, M. Hartelt, R. Wasche, M.A. Urchegui, X. Gomez, Fretting wear of thin steel wires. Part 1: Influence of contact pressure, Wear 268 (2010) 1409¬1416, D01:10.1016/j.wear.2010.02.017.
- [4] A. Neyman, Fretting in machine elements, Gdansk University of Technology Publishing House, Gdansk, 2003, Available at: https://mostwiedzy.pl/pl/ publication/fretting-w-elementach-maszyn,91207-l (in Polish), Accessed: August 20, 2018.
- [5] P. Kula, Surface layer engineering, Publisher of the Lodz University of Technology, 2000 (in Polish).
- [6] R.B. Waterhouse, Fretting Corrosion, Proceedings of the Institution of Mechanical Engineers 169 (1955) 1157-1172, DOI: 10.1243/PIME_PROC_1955_169_ 112_02.
- [7] M. Hebda, A. Wachal, Trybology, WNT, Warszawa, 1980, Available at: http://www.tribologia.eu/ptt/try/ tr.htm, accessed August 20, 2018 (in Polish).
- [8] M.H. Zhu, Z.R. Zhou, On the mechanisms of various fretting wear modes, Tribology International 44 (2011) 1378-1388, DOI: 10.1016/j.triboint.2011.02.010.
- [9] H.Y. Yu, H.X. Quan, Z.B. Cai, S.S. Gao, M.H. Zhu, Radial Fretting Behavior of Cortical Bone Against Titanium, Tribology Letters 31 (2008) 69-76, DOI: 10.1007/sll249-008-9339-9.
- [10] J.D. Weaver, L. Ramirez, S. Sivan, M. Di Prima, Characterizing fretting damage in different test media for cardiovascular device durability testing, Journal of the Mechanical Behavior of Biomedical Materials 82 (2018) 338-344, DOI: 10.1016/j.jmbbm.2018.04.004.
- [11] D.O. Halwani, P.G. Anderson, B.C. Brott, A.S. Anayiotos, J.E. Lemons, Clinical device-related article surface characterization of explanted endovascular stents: evidence of in vivo corrosion, Journal of Biomedical Materials Research. Part B: Applied Biomaterials 95/1 (2010) 225-238, DOI: 10.1002/jbm.b31698.
- [12] L. Klimek, A. Palatynska-Ulatowska, Scanning electron microscope appearances of fretting in the fixed orthodontic appliances, Acta of Bioengineering and Biomechanics 14/3 (2012) 79-83, DOI: 10.5277/abbl20311.
- [13] J. Geringer, K. Kim, B. Boyer, Fretting corrosion in biomedical implants, in: D. Landolt, S. Mischler (Eds.), Tribocorrosion of Passive Metals and Coatings, Elsevier, 2011, 401-423, DOI: 10.1533/9780857093738.3.401.
- [14] J. Geringer, B. Forest, P. Combrade, Fretting-corrosion of materials used as orthopaedic implants, Wear 259 (2005) 943-951, DOI: 10.1016/j.wear.2004.11.027.
- [15] B. Tritschler, B. Forest, J. Rieu, Fretting corrosion of materials for orthopaedic implants: a study of a metal/polymer contact in an artificial physiological medium, Tribology International 32 (1999) 587-596, DOI: 10.1016/S0301-679X(99)00099-7.
- [16] L. Duisabeau, P. Combrade, B. Forest, Environmental effect on fretting of metallic materials for orthopaedic implants, Wear 256 (2004) 805-816, DOI: 10.1016/ S0043-1648(03)00522-2.
- [17] F.E. Rowan, A. Wach, T.M. Wright, D.E. Padgett, The onset of fretting at the head-stem connection in hip arthroplasty is affected by head material and trunnion design under simulated corrosion conditions, Journal of Orthopaedic Research 36/6 (2018) 1630-1636, DOI: 10.1002/jor.23813.
- [18] S. Kumar, S. Singh, R. Hamsa P.R, S. Ahmed, Prasanthma, A. Bhatnagar, M. Sidhu, P. Shetty, Evaluation of Friction in Orthodontics Using Various Brackets and Archwire Combinations-An in Vitro Study, Journal of Clinical and Diagnostic Research 8/5 (2014) ZC33-ZC36, DOI: 10.7860/JCDR/2014/ 7990.4364.
- [19] V. Singh, J.P. Shorez, S.A. Mali, N.J. Hallab, J.L. Gilbert, Material dependent fretting corrosion in spinal fusion devices: Evaluation of onset and long-term response, Journal of Biomedical Materials Research. Part B: Applied Biomaterials 106/8 (2018) 2858-2868, DOI: 10.1002/jbm.b.34067.
- [20] E. Lukina, M. Kollerov, J. Meswania, A. Khon, P. Panin, G.W. Blunn, Fretting corrosion behavior of nitinol spinal rods in conjunction with titanium pedicle screws, Materials Science and Engineering: C 72 (2017) 601-610, DOI: 10.1016/j.msec.2016.11.120.
- [21] H. Huang, Y.H. Chiu, T.H. Lee, S.C. Wu, H.W. Yang, K.H. Su, C.C. Hsu, Ion release from NiTi orthodontic wires in artificial saliva with various acidities, Biomaterials 24 (2003) 3585-3592, DOI: 10.1016/ S0142-9612(03)00188-l.
- [22] M. Klekotka, J.R. Dąbrowski, W. Karalus, Fretting - corrosion of Co-Cr-Mo alloy in oral cavity environment, Solid State Phenomena 227 (2015) 455¬458, DOI: 10.4028/www.scientific.net/SSP.227.455.
- [23] P. Downarowicz, M. Mikulewicz, Trace metal ions release from fixed orthodontic appliances and DNA damage in oral mucosa cells by in vivo studies: A literature review, Advances in Clinical and Experimental Medicine 26 (2017) 1155-1162, DOI: 10.17219/acem/65726.
- [24] J.R. Dąbrowski, M. Klekotka, J. Sidun, Fretting and fretting corrosion of 316L implantation steel in the oral cavity environment, Exploitation and Reliability 16/3 (2014) 441-446, Available at: http://yadda.icm.edu.pl/ yadda/element/bwmetal.element.baztech-a6684b96- 887d-4430-bbfl-7c4bccd47ddd, Accessed: May 21, 2018.
- [25] A. Koenen, P. Virmoux, R. Gras, J. Blouet, J.M. Dewulf, J.M. De Monicault, A machine for fretting fatigue and fretting wear testing in cryotechnical and normal environment, Wear 197 (1996) 192-196, DOI: 10.1016/0043-1648(96)06929-3.
- [26] D. Kumar, R. Biswas, L.H. Poh, M.A. Wahab, Fretting fatigue stress analysis in heterogeneous material using direct numerical simulations in solid mechanics, Tribology International 109 (2017) 124-132, DOI: 10.1016/j.triboint.2016.12.033.
- [27] M. Klekotka, J.R. Dąbrowski, Fretting Wear of NiTi - Shape-Memory Alloy, in: M. Gzik, E. Tkacz, Z. Paszenda, E. Piętka (Eds.), Innovations in Biomedical Engineering, Springer, Cham, 2017, 33-39. DOI: 10.1007/978-3-319-47154-9_5.
- [28] M. Klekotka, J.R. Dąbrowski, B. Kalska-Szostko, U. Klekotka, Studies of Fretting Processes in Titanium Implantation Alloys from the Ti-Al-V Group, Key Engineering Materials 687 (2016) 98-105, DOI: 10.4028/www.scientific.net/KEM.687.98.
- [29] M. Bryant, A. Neville, Fretting corrosion of CoCr alloy: Effect of load and displacement on the degradation mechanisms, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 231 (2017) 114-126, DOI: 10.1177/ 0954411916680237.
- [30] T. Kang, S.Y. Huang, J.J. Huang, Q.H. Li, D.F. Diao, Y.Z. Duan, The effects of diamond-like carbon films on fretting wear behavior of orthodontic archwire-bracket contacts, Journal of Nanoscience and Nanotechnology 15 (2015) 4641-4647, DOI: 10.1166/jnn.2015.9788.
- [31] C. Rapiejko, S. Fouvry, B. Grosgogeat, B. Wendler, A representative ex-situ fretting wear investigation of orthodontic arch-wire/bracket contacts, Wear 266 (2009) 850-858, DOI: 10.1016/j.wear.2008.12.013.
- [32] S.Y. Huang, J.J. Huang, T. Kang, D.F. Diao, Y.Z. Duan, Coating NiTi archwires with diamond-like carbon films: reducing fluoride-induced corrosion and improving frictional properties, Journal of Materials Science: Materials in Medicine 24 (2013) 2287-2292, DOI: 10.1007/sl0856-013-4988-0.
- [33] L.A. Rocha, F. Oliveira, H.V. Cruz, C. Sukotjo, M.T. Mathew, Bio-tribocorrosion in dental applications, in: Y. Yan (Ed.), Bio-Tribocorrosion in Biomaterials and Medical Implants, Elsevier, 2013, 223-249, DOI: 10.1533/9780857098603.3.223.
- [34] Z.M. Jin, J. Zheng, W. Li, Z.R. Zhou, Tribology of medical devices, Biosurface and Biotribology 2 (2016) 173-192, DOI: 10.1016/j.bsbt.2016.12.001.
- [35] R.S. Kotha, R.K. Alla, M. Shammas, R.K. Ravi, An Overview of Orthodontic Wires, Trends in Biomaterials and Artificial Organs 28 (2014) 32-36.
- [36] M. Iijima, S. Zinelis, S.N. Papageorgiou, W. Brantley, T. Eliades, Orthodontic brackets, in: T. Eliades, W. Brantley (Eds.), OrthodonticApplications of Biomaterials, Elsevier, 2017, 75-96, DOI: 10.1016/ B978-0-08-100383-1.00004-7.
- [37] C. Szuhanek, Material Characteristics of the Orthodontic Archwires, in: B. Katalinic (Ed.), DAAAM International Scientific Book 2011, DAAAM International Vienna, 2011, DOI: 10.2507/daaam.scibook.2011.24.
- [38] H. Khan, Orthodontic brackets: selection, placement and debonding, CreateSpace Independent Publishing Platform, USA, 2015.
- [39] M. Parchańska-Kowalik, E. Wolowiec-Korecka, L. Klimek, Effect of chemical surface treatment of titanium on its bond with dental ceramics, The Journal of Prosthetic Dentistry 120 (2018) 470-475, DOI: 10.1016/j .prosdent.2017.11.025.
- [40] B. Majkowska, M. Jażdżewska, D. Miotke, E. Woło¬wiec, A. Zieliński, Evaluation of Wear Resistance of Ti Alloys Used for Elements Friction of Knee Endo¬prosthesis, Solid State Phenomena 225 (2014) 123-130, DOI: 10.4028/www.scientific.net/SSP.225. 123.
- [41] M. Redlich, A. Katz, L. Rapoport, H.D. Wagner, Y. Feldman, R. Tenne, Improved orthodontic stainless steel wires coated with inorganic fullerene-like nanoparticles of WS2 impregnated in electroless nickel-phosphorous film, Dental Materials 24 (2008) 1640-1646, DOI: 10.1016/j.dental.2008.03.030.
- [42] S. Kobayashi, Y. Ohgoe, K. Ozeki, K. Sato, T. Sumiya, K.K. Hirakuri, H. Aoki, Diamond-like carbon coatings on orthodontic archwires, Diamond and Related Materials 14 (2005) 1094-1097, DOI: 10.1016/ j.diamond.2004.11.036.
- [43] F. Elayyan, N. Silikas, D. Beam, Mechanical properties of coated superelastic archwires in conventional and self-ligating orthodontic brackets, American Journal of Orthodontics and Dentofacial Orthopedics 137 (2010) 213-217, DOI: 10.1016/j.ajodo.2008.01.026.
- [44] F. Elayyan, N. Silikas, D. Beam, Ex vivo surface and mechanical properties of coated orthodontic archwires, European Journal of Orthodonitcs 30/6 (2008) 661-667, DOI: 10.1093/ejo/cjn057.
- [45] S.W. Zufall, R.P. Kusy, Sliding Mechanics of Coated Composite Wires and the Development of an Engineering Model for Binding, The Angle Orthodontist 70 (2000) 34-47, DOI: 10.1043/0003- 3219(2000)070<0034:SMOCCW>2.0.CO;2.
- [46] P. Neumann, C. Bourauel, A. Jâger, Corrosion and permanent fracture resistance of coated and conventional orthodontic wires, Journal of Materials Science: Materials in Medicine 13 (2002) 141-147, DOI: 10.1023/A: 1013831011241.
- [47] D.L. da Silva, C.T. Mattos, R.A. Simâo, A.C. de Oliveira Ruellas, Coating stability and surface characteristics of esthetic orthodontic coated archwires, The Angle Orthodontist 83 (2013) 994-1001, DOI: 10.2319/111112-866.1.
- [48] A.I. Karaman, N. Kir, S. Belli, Four applications of reinforced polyethylene fiber material in orthodontic practice, American Journal of Orthodontics and Dentofacial Orthopedics 121 (2002) 650-654, DOI: 10.1067/mod.2002.123818.
- [49] G. Willems, K. Clocheret, J.P. Celis, G. Verbeke, E. Chatzicharalampous, C. Carels, Frictional behavior of stainless steel bracket-wire combinations subjected to small oscillating displacements, American Journal of Orthodontics and Dentofacial Orthopedics 120 (2001) 371-377, DOI: 10.1067/mod.2001.116088.
- [50] K. House, F. Semetz, D. Dymock, J.R. Sandy, A.J. Ireland, Corrosion of orthodontic appliances—should we care?, American Journal of Orthodontics and Dentofacial Orthopedics 133 (2008) 584-592, DOI: 10.1016/j.ajodo.2007.03.021.
- [51] I. Sifakakis, T. Eliades, Adverse reactions to orthodontic materials, Australian Dental Journal 62 (2017) 20-28, DOI: 10.1111/adj.l2473.
- [52] K. Szymański, W. Olszewski, D. Satuła, K. Recko, J. Waliszewski, B. Kalska-Szostko, J.R. Dąbrowski, J. Sidun, E. Kulesza, Characterization of fretting products between austenitic and martensitic stainless steels using Môssbauer and X-ray techniques, Wear 300 (2013) 90¬95, DOI: 10.1016/j.wear.2013.01.116.
- [53] H. Zhang, S. Guo, D. Wang, T. Zhou, L. Wang, J. Ma, Effects of nanostructured, diamondlike, carbon coating and nitrocarburizing on the frictional properties and biocompatibility of orthodontic stainless steel wires, Angle Orthodontist 86 (2016) 782-788, DOI: 10.2319/ 090715-602.1.
- [54] A. Sheibaninia, Effect of thermocycling on nickel release from orthodontic arch wires: an in vitro study, Biological Trace Element Research 162 (2014) 353¬359, DOI: 10.1007/sl2011-014-0136-z.
- [55] M.F. Sfondrini, V. Cacciafesta, E. Maffia, A. Scribante, G. Alberti, R. Biesuz, C. Klersy, Nickel release from new conventional stainless steel, recycled, and nickel¬free orthodontic brackets: An in vitro study, American Journal of Orthodontics and Dentofacial Orthopedics 137 (2010) 809-815, DOI: 10.1016/j.ajodo.2008.07. 021.
- [56] T.H. Huang, S.J. Ding, Y. Min, C.T. Kao, Metal ion release from new and recycled stainless steel brackets, European Journal of Orthodontics 26 (2004) 171-177, DOI: 10.1093/ejo/26.2.17.
- [57] L. Klimek, A. Palatynska-Ulatowska, B. Badelek- Mirek, Fretting in permanent orthodontic appliances - preliminary tests, Modem Dental Technician - Special Issue (2006) 103-107.
- [58] T. Eliades, In Vivo Aging of Orthodontic Alloys: Implications for Corrosion Potential, Nickel Release, and Biocompatibility, Angle Orthodontist 72/3 (2002) 222-237.
- [59] D.J. Michelberger, R.L. Eadie, M.G. Faulkner, K.E. Glover, N.G. Prasad, P.W. Major, The friction and wear patterns of orthodontic brackets and archwires in the dry state, American Journal of Orthodontics and Dentofacial Orthopedics 118 (2000) 662-674, DOI: 10.1067/mod.2000.105529.
- [60] V. Cacciafesta, M.F. Sfondrini, A. Ricciardi, A. Scribante, C. Klersy, F. Auricchio, Evaluation of friction of stainless steel and esthetic self-ligating brackets in various bracket-archwire combinations, American Journal of Orthodontics and Dentofacial Orthopedics 124 (2003) 395-402.
- [61] C. Nishio, A.F.J. da Motta, C.N. Elias, J.N. Mucha, In vitro evaluation of frictional forces between archwires and ceramic brackets, American Journal of Orthodontics and Dentofacial Orthopedics 125 (2004) 56-64. DOI: 10.1016/j.ajodo.2003.01.005.
- [62] A. Cash, R. Curtis, D. Garrigia-Majo, F. McDonald, A comparative study of the static and kinetic frictional resistance of titanium molybdenum alloy archwires in stainless steel brackets, The European Journal of Orthodontics 26 (2004) 105-111, DOI: 10.1093/ejo/ 26.1.105.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW
przeznaczonych na działalność upowszechniającą naukę (2019).
przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-cc684ee0-5f1f-44d7-bc7c-f7d7b7458d9e