Warianty tytułu
Języki publikacji
Abstrakty
Quantifying the burial of organic carbon (OC) and inorganic carbon (IC) species in marine sediments contribute to a better understanding of carbon cycle. This is especially important in the Arctic, where carbon deposition is relatively high and expected to change with climate warming. This study aimed to quantify the burial rates of OC and IC in the sediments of two high-latitude fjords – Hornsund and Kongsfjorden (European Arctic). Comparison of the results from three methods quantifying carbon burial in marine sediments was carried out. Sediment cores, pore water, and over-bottom water samples were analyzed for OC and IC. The burial rates were established by considering: carbon deposition to sediments minus carbon return flux, carbon deposited to sediments 80-100 years ago and carbon deposited to sediments recently. The radiolead method was employed for sediment dating. Carbon return flux was obtained using dissolved carbon species concentrations in pore water and over-bottom water. Sediment linear and mass accumulation rates in the fjords were 0.12-0.20 cm y−1 and 1160-2330 g m−2y−1. The OC burial rates were 19.3-30.3 g OC m−2 y−1 in Hornsund and 5.7-10.0 g OC m−2y−1 in Kongsfjorden. IC burial was taken as equal to IC deposition and ranged from 10.7 to 20.8 g IC m−2 y−1 in Hornsund and 19.4-45.7 g IC m−2 y−1 in Kongsfjorden. The “return flux” model seems most appropriate for carbon burial rate studies. The data demonstrated that OC burial dominates in Hornsund, while in Kongsfjorden, IC burial is more important.
Czasopismo
Rocznik
Tom
Strony
405--418
Opis fizyczny
Bibliogr. 71 poz., mapy, rys., tab., wykr.
Twórcy
autor
- Institute of Oceanology Polish Academy of Sciences, Sopot, Poland, kkozio@iopan.gda.pl
autor
- Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
autor
- Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
Bibliografia
- [1] Andruleit, H., Freiwald, A., Schafer, P., 1996. Bioclastic carbonate sediments on the southwestern Svalbard shelf. Mar. Geol. 134 (3-4), 163-182, http://dx.doi.org/10.1016/0025-3227(96)00044-8.
- [2] Antonio, E. S., Kasai, A., Ueno, M., Won, N., Ishihi, Y., Yokoyama, H., Yamashita, Y., 2010. Spatial variation in organic matter utilization by benthic communities from Yura River-Estuary to offshore of Tango Sea, Japan. Estuar. Coast. Shelf Sci. 86 (1), 107-117, http://dx.doi.org/10.1016/j.ecss.2009.10.020.
- [3] Arndt, S., Jorgensen, B. B., LaRowe, D. E., Middelburg, J. J., Pancost, R. D., Regnier, P., 2013. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth-Sci. Rev. 123, 53-86, http://dx.doi.org/10.1016/j.earscirev.2013.02.008.
- [4] Arrigo, K. R., van Dijken, G., Pabi, S., 2008. Impact of a shrinking Arctic ice cover on marine primary production. Geophys. Res. Lett. 35 (L19603), http://dx.doi.org/10.1029/2008GL035028.
- [5] Berner, R. A., 1980. Early Diagenesis: A Theoretical Approach. Princeton Univ. Press, Princeton, 1-241.
- [6] Bijoy Nandan, S., Krishnapriya, P. P., Akhilesh, V., Asha, C. V., Jayachandran, P. R., Krishnan, K. P., 2016. Benthic Faunal assemblage of the Arctic Kongsfjorden System, Norway. Int. J. Mar. Sci. 6, 1-8, http://dx.doi.org/10.5376/ijms.2016.06.0054.
- [7] Bourgeois, S., Kerherve, P., Calleja, M. L., Many, G., Morata, N., 2016. Glacier inputs influence organic matter composition and prokaryotic distribution in a high Arctic fjord (Kongsfjorden, Svalbard). J. Marine Syst. 164, 112-127, http://dx.doi.org/10.1016/j.jmarsys.2016.08.009.
- [8] Carroll, J., Zaborska, A., Papucci, C., Schirone, A., Carroll, M. L., Pempkowiak, J., 2008. Accumulation of organic carbon in western Barents Sea sediments. Deep-Sea Res. II 55 (20-21), 2361-2371, http://dx.doi.org/10.1016/j.dsr2.2008.05.005.
- [9] Cochrane, S. K. J., Denisenko, S. G., Renaud, P. E., Emblow, C. S., Ambrose, W. G., Ellingsen, I. H., Skarohamar, J., 2009. Benthic macrofauna and productivity regimes in the Barents Sea — ecological implications in a changing Arctic. J. Sea Res. 61 (4), 222-233, http://dx.doi.org/10.1016/j.seares.2009.01.003.
- [10] Cui, X. Q., Bianchi, T. S., Jaeger, J. M., Smith, R. W., 2016. Biospheric and petrogenic organic carbon flux along southeast Alaska. Earth Planet. Sci. Lett. 452, 238-246, http://dx.doi.org/10.1016/j.epsl.2016.08.002.
- [11] Elverhoi, A., Lonne, O., Seland, R., 1983. Glacimarine sedimentation in a modern fjord environment. Polar Res. 1, 127-149, http://dx.doi.org/10.3402/polar.v1i2.6978.
- [12] Fernandez-Mendez, M., Katlein, C., Rabe, B., Nicolaus, M., Peeken, I., Bakker, K., Flores, H., Boetius, A., 2015. Photosynthetic production in the central Arctic Ocean during the record seaice minimum in 2012. Biogeosciences 12, 3525-3549, http://dx.doi.org/10.5194/bg-12-3525-2015.
- [13] Flynn, W. W., 1968. The determination of low levels of 210Po in environmental materials. Anal. Chim. Acta 43 (2), 221-227, http://dx.doi.org/10.1016/S0003-2670(00)89210-7.
- [14] Freiwald, A., 1998. Modern nearshore cold-temperate calcareous sediments in the Troms District, Northern Norway. J. Sediment. Res. 68 (5), 763-776.
- [15] Glud, R. N., Holby, O., Hoffmann, F., Canfield, D. E., 1998. Benthic mineralization and exchange in Arctic sediments (Svalbard, Norway). Mar. Ecol.-Prog. Ser. 173, 237-251, http://dx.doi.org/10.3354/meps173237.
- [16] Gorlich, K., 1986. Glacimarine sedimentation of muds in Hornsund Fjord, Spitsbergen. Ann. Soc. Geologor. Polon. 56 (3-4), 433-477.
- [17] Holcombe, B. L., Keil, R. G., Devol, A. H., 2001. Determination of pore-water dissolved organic carbon fluxes from Mexican margin sediments. Limnol. Oceanogr. 46 (2), 298-308, http://dx.doi.org/10.4319/lo.2001.46.2.0298.
- [18] Holding, J. M., Duarte, C. M., Delgado-Huertas, A., Soetaert, K., Vonk, J. E., Agusti, S., Wassmann, P., Middelburg, J. J., 2017. Autochthonous and allochthonous contributions of organic carbon to microbial food webs in Svalbard fjords. Limnol. Oceanogr. 62 (2), 1307-1323, http://dx.doi.org/10.1002/lno.10526.
- [19] Hop, H., Pearson, T., Hegseth, E. N., Kovacs, K. M., Wiencke, C., Kwaśniewski, S., Eiane, K., Mehlum, F., Gulliksen, B., Włodarska-Kowalczuk, M., Lydersen, C., Węsławski, J. M., Cochrane, S., Gabrielsen, G. W., Leakey, R. J. G., Lonne, O. J., Zajączkowski, M., Falk-Petersen, S., Kendall, M., Wangberg, S. A., Bischof, K., Voronkov, A. Y., Kovaltchouk, N. A., Wiktor, J., Poltermann, M., di Prisco, G., Papucci, C., Gerland, S., 2002. The marine ecosystem of Kongsfjorden, Svalbard. Polar Res. 21 (1), 167-208, http://dx.doi.org/10.1111/j.1751-8369.2002.tb00073.x.
- [20] Hulth, S., Hall, P. O. J., Blackburn, T. H., Landen, A., 1996. Arctic sediments (Svalbard): pore water and solid phase distributions of C, N, P and Si. Polar Biol. 16 (6), 447-462.
- [21] Ingall, E., Kolowith, L., Lyons, T., Hurtgen, M., 2005. Sediment carbon, nitrogen and phosphorus cycling in an anoxic fjord. Effingham Inlet, British Columbia. Am. J. Sci. 305 (3), 240-258, http://dx.doi.org/10.2475/ajs.305.3.240.
- [22] IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- [23] Jorgensen, B. B., Glud, R. N., Holby, O., 2005. Oxygen distribution and bioirrigation in Arctic fjord sediments (Svalbard, Barents Sea). Mar. Ecol.-Prog. Ser. 292, 85-95, http://dx.doi.org/10.3354/meps292085.
- [24] Kędra, M., Włodarska-Kowalczuk, M., Węsławski, J.M., 2010. Decadal change in macrobenthic soft-bottom community structure in a high Arctic fjord (Kongsfjorden, Svalbard). Polar Biol. 33 (1), 1-11, http://dx.doi.org/10.1007/s00300-009-0679-1.
- [25] Knudson, K. P., Hendy, I. L., Neil, H. L., 2011. Re-examining Southern Hemisphere westerly wind behavior: insights from a late Holocene precipitation reconstruction using New Zealand fjord sediments. Quat. Sci. Rev. 30, 3124-3138, http://dx.doi.org/10.1016/j.quascirev.2011.07.017.
- [26] Koziorowska, K., Kulinski, K., Pempkowiak, J., 2016. Sedimentary organic matter in two Spitsbergen fjords: Terrestrial and marine contributions based on carbon and nitrogen contents and stable isotopes composition. Cont. Shelf Res. 113, 38-46, http://dx.doi.org/10.1016/j.csr.2015.11.010.
- [27] Koziorowska, K., Kuliński, K., Pempkowiak, J., 2017. Distribution and origin of inorganic and organic carbon in the sediments of Kongsfjorden, Northwest Spitsbergen, European Arctic. Cont. Shelf Res. 150, 27-35, http://dx.doi.org/10.1016/j.csr.2017.08.023.
- [28] Kuliński, K., Pempkowiak, J., 2012. Carbon Cycling in the Baltic Sea. Springer, Berlin, 1-129, http://dx.doi.org/10.1007/978-3-642-19388-0.
- [29] Kuliński, K., Kędra, M., Legeżyńska, J., Głuchowska, M., Zaborska, A., 2014. Particulate organic matter sinks and sources in high Arctic fjord. J. Marine Syst. 139, 27-37, http://dx.doi.org/10.1016/j.jmarsys.2014.04.018.
- [30] Kumar, V., Tiwari, M., Nagoji, S., Tripathi, S., 2016. Evidence of Anomalously Low delta C-13 of Marine Organic Matter in an Arctic Fjord. Sci. Rep. 6, http://dx.doi.org/10.1038/srep36192.
- [31] Lalande, C., Belanger, S., Fortier, L., 2009. Impact of a decreasing sea ice cover on the vertical export of particulate organic carbon in the northern Laptev Sea, Siberian Arctic Ocean. Geophys. Res. Lett. 36 (L21604), http://dx.doi.org/10.1029/2009GL040570.
- [32] Martin, W. R., McCorkle, D. C., 1993. Dissolved organic carbon concentrations in marine pore waters determined by high-temperature oxidation. Limnol. Oceanogr. 38 (7), 1464-1479.
- [33] Mucci, A., Sundby, B., Gehlen, M., Arakaki, T., Zhong, S., Silverberg, N., 2000. The fate of carbon in continental shelf sediments of eastern Canada: a case study. Deep-Sea Res. II 47, 733-760.
- [34] Muller, A., 2001. Geochemical expressions of anoxic conditions in Nordasvannet, a land-locked fjord in western Norway. Appl. Geochem. 16 (3), 363-374, http://dx.doi.org/10.1016/s0883-2927(00)00024-x.
- [35] Muzuka, A. N. N., Hillaire-Marcel, C., 1999. Burial rates of organic matter along the eastern Canadian margin and stable isotope constraints on its origin and diagenetic evolution. Mar. Geol. 160 (3-4), 251-270, http://dx.doi.org/10.1016/s0025-3227(99)00022-5.
- [36] Pawłowska, J., Łącka, M., Kucharska, M., Szymańska, N., Koziorowska, K., Kuliński, K., Zajaczkowski, M., 2017. Benthic foraminifera contribution to fjord modern carbon pools: a seasonal study in Adventfjorden, Spitsbergen. Geobiology 15 (5), 704-714, http://dx.doi.org/10.1111/gbi.12242.
- [37] Pempkowiak, J., 1991. Enrichment factors of heavy-metals in the Southern Baltic surface sediments dated with Pb210 and Cs137. Environ. Int. 17 (5), 421-428, http://dx.doi.org/10.1016/0160-4120(91)90275-u.
- [38] Pempkowiak, J., Szponar, Z., 1993. The complexing capacities of humic substances isolated from Baltic sediments and their molecular weight fractions towards copper (II) and iron (III). Oceanologia 34, 39-47.
- [39] Pickrill, R. A., 1993. Sediment yields in Fiordland. J. Hydrol. 31 (1), 39-55.
- [40] Piechura, J., Beszczynska-Moller, A., Osinski, R., 2001. Volume, heat and salt transport by the West Spitsbergen Current. Polar Res. 20 (2), 233-240, http://dx.doi.org/10.1111/j.1751-8369.2001.tb00061.x.
- [41] Piwosz, K., Walkusz, W., Hapter, R., Wieczorek, P., Hop, H., Wiktor, J., 2009. Comparison of productivity and phytoplankton in a warm (Kongsfjorden) and a cold (Hornsund) Spitsbergen fjord in midsummer 2002. Polar Biol. 32 (4), 549-559, http://dx.doi.org/10.1007/s00300-008-0549-2.
- [42] Promińska, A., Cisek, M., Walczowski, W., 2017. Kongsfjorden and Hornsund hydrography — comparative study based on a multiyear survey in fjords of west Spitsbergen. Oceanologia 59 (4), 397-412, http://dx.doi.org/10.1016/j.oceano.2017.07.003.
- [43] Renaud, P. E., Morata, N., Ambrose, W. G., Bowie, J. J., Chiuchiolo, A., 2007. Carbon cycling by seafloor communities on the eastern Beaufort Sea shelf. J. Exp. Mar. Biol. Ecol. 349 (2), 248-260, http://dx.doi.org/10.1016/j.jembe.2007.05.021.
- [44] Renaud, P. E., Morata, N., Carroll, M. L., Denisenko, S. G., Reigstad, M., 2008. Pelagic-benthic coupling in the western Barents Sea: processes and time scales. Deep-Sea Res. II 55, 2372-2380, http://dx.doi.org/10.1016/j.dsr2.2008.05.017.
- [45] Robbins, J. A., 1978. Geochemical and geophysical applications of radioactive lead. In: Nriagu, J. O. (Ed.), Biogeochemistry of Lead in the Environment. Elsevier, Amsterdam, 285-393.
- [46] Rysgaard, S., Nielsen, T. G., 2006. Carbon cycling in a high-arctic marine ecosystem — Young Sound, NE Greenland. Prog. Oceanogr. 71 (2-4), 426-445, http://dx.doi.org/10.1016/j.pocean.2006.09.004.
- [47] Schnitzer, M., 1991. Soil organic matter — the next 75 years. Soil Sci. 151 (1), 41-58, http://dx.doi.org/10.1097/00010694-199101000-00008.
- [48] Schnitzer, M., Khan, S. U., 1972. Humic Substances in the Environment. Books on Demand.
- [49] Sepulveda, J., Pantoja, S., Hughen, K. A., 2011. Sources and distribution of organic matter in northern Patagonia fjords, Chile (similar to 44-47 degrees S): a multi-tracer approach for carbon cycling assessment. Cont. Shelf Res. 31 (3-4), 315-329, http://dx.doi.org/10.1016/j.csr.;1; 2010.05.013.
- [50] Silverberg, N., Sundby, B., Mucci, A., Zhong, S., Arakaki, T., Hall, P., LandeHn, A., Tengberg, A., 2000. Remineralization of organic carbon in eastern Canadian continental margin sediments. Deep-Sea Res. II 47 (3-4), 699-731, http://dx.doi.org/10.1016/S0967-0645(99)00123-X.
- [51] Smeaton, C., Austin, W. E. N., Davies, A. L., Baltzer, A., Abell, R. E., Howe, J. A., 2016. Substantial stores of sedimentary carbon held in mid-latitude fjords. Biogeosciences 13 (20), 5771-5787, http://dx.doi.org/10.5194/bg-13-5771-2016.
- [52] Smith, R. W., Bianchi, T. S., Allison, M., Savage, C., Galy, V., 2015. High rates of organic carbon burial in fjord sediments globally. Nat. Geosci. 8 (6), 446-450, http://dx.doi.org/10.1038/ngeo2421.
- [53] Smoła, Z., Tatarek, A., Wiktor, J., Wiktor Jr., J., Hapter, R., Kubiszyn, A., Węsławski, J. M., 2017. Primary producers and production in Hornsund and Kongsfjorden — comparison of two fjord systems. Pol. Polar Res. 38 (3), 351-373, http://dx.doi.org/10.1515/popore-2017-0013.
- [54] Stein, R., Macdonald, R. W., 2004. The Organic Carbon Cycle in Arctic Ocean. Springer.
- [55] St-Onge, G., Hillaire-Marcel, C., 2001. Isotopic constraints of sedimentary inputs and organic carbon burial rates in the Saguenay Fjord, Qubec. Mar. Geol. 176 (1-4), 1-22, http://dx.doi.org/10.1016/S0025-3227(01)00150-5.
- [56] Stouermer, D., Harvey, G., 1974. Humic substances from seawater. Nature 250, 480-481, http://dx.doi.org/10.1038/250480a0.
- [57] Swerpel, S., 1985. The Hornsund fjord: water masses. Pol. Polar Res. 6 (4), 475-496.
- [58] Szczuciński, W., Schettler, G., Zajączkowski, M., 2006. Sediment accumulation rates, geochemistry and provenance in complex High Arctic fjord, Hornsund, Svalbard. In: Fourth ESF SEDIFLUX Science Meeting & First Workshop of I.A.G./A.I.G. SEDIBUD: Source to Sink Fluxes and Sediment Budgets in Cold Environments. NGF Abstracts and Proceeding sof the Geological Society of Norway 4. p. 65.
- [59] Szczuciński, W., Zajączkowski, M., Scholten, J., 2009. Sediment accumulation rates in subpolar fjords — impact of post-Little Ice Age glaciers retreat, Billefjorden, Svalbard. Estuar. Coast. Shelf Sci. 85 (3), 345-356, http://dx.doi.org/10.1016/j.ecss.2009.08.021.
- [60] Teske, A., Durbin, A., Ziervogel, K., Cox, C., Arnosti, C., 2011. Microbial community composition and function in permanently cold seawater and sediments from an Arctic Fjord of Svalbard. Appl. Environ. Microbiol. 77 (6), 2008-2018, http://dx.doi.org/10.1128/aem.01507-10.
- [61] Ullman, W. J., Aller, R. C., 1982. Diffusion-coefficients in nearshore marine-sediments. Limnol. Oceanogr. 27 (3), 552-556, http://dx.doi.org/10.4319/lo.1982.27.3.0552.
- [62] Węsławski, J. M., Buchholz, F., Głuchowska, M., Weydmann, A., 2017. Ecosystem maturation process follows the warming of the Arctic fjords. Oceanologia 59 (4), 592-602, http://dx.doi.org/10.1016/j.oceano.2017.02.002.
- [63] Winkelmann, D., Knies, J., 2005. Recent distribution and accumulation of organic carbon on the continental margin west off Spitsbergen. Geochem. Geophys. Geosyst. 6, http://dx.doi.org/10.1029/2005gc000916.
- [64] Winogradow, A., Pempkowiak, J., 2018. Characteristic of sedimentary organic matter in coastal and depositional areas in the Baltic Sea. Estuar. Coast. Shelf Sci. 204, 66-75, http://dx.doi.org/10.1016/j.ecss.2018.02.011.
- [65] Włodarska-Kowalczuk, M., Pearson, T. H., 2004. Soft-bottom macrobenthic faunal associations and factors affecting species distributions in an Arctic glacial fjord (Kongsfjord, Spitsbergen). Polar Biol. 27 (3), 155-167, http://dx.doi.org/10.1007/s00300-003-0568-y.
- [66] Zaborska, A., 2017. Sources of 137Cs to an Arctic fjord (Hornsund, Svalbard). J. Environ. Radioact. 180, 19-26, http://dx.doi.org/10.1016/j.jenvrad.2017.09.021.
- [67] Zaborska, A., Beszczynska-Moller, A., Włodarska-Kowalczuk, M., 2017. History of heavy metal accumulation in the Svalbard area: distribution, origin and transport pathways. Environ. Pollut. 231 (1), 437-450, http://dx.doi.org/10.1016/j.envpol.2017.08.042.
- [68] Zaborska, A., Carroll, J., Papucci, C., Pempkowiak, J., 2007. Intercomparison of alpha and gamma spectrometry techniques used in Pb-210 geochronology. J. Environ. Radioact. 93 (1), 38-50, http://dx.doi.org/10.1016/j.jenvrad.2006.11.007.
- [69] Zaborska, A., Carroll, J., Papucci, C., Torricelli, L., Carroll, M. L., Walkusz-Miotk, J., Pempkowiak, J., 2008. Recent sediment accumulation rates for the Western margin of the Barents Sea. Deep-Sea Res. II 55 (20-21), 2352-2360, http://dx.doi.org/10.1016/j.dsr2.2008.05.026.
- [70] Zaborska, A., Pempkowiak, J., Papucci, C., 2006. Some sediment characteristic and sedimentation rates in an Arctic fjord (Kongsfjorden, Svalbard). Rocz. Ochr. Sr. 8, 79-96.
- [71] Zaborska, A., Wlodarska-Kowalczuk, M., Legeżyńska, J., Jankowska, E., Winogradow, A., Deja, K., 2016. Sedimentary organic matter sources, benthic consumption and burial in west Spitsbergen fjords — Signs of maturing of Arctic fjordic systems? J. Marine Syst. 180, 112-123, http://dx.doi.org/10.1016/j.jmarsys.2016.11.005.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-cc483895-75be-4f8d-8d19-07f08cf4bfdf