Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 23, iss. 2 | 213--218
Tytuł artykułu

Utilization of Black Liquor as Urease Inhibitor for Ammonia Reduction

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Urea fertilizers in agricultural operations usually tend to produce large amounts of ammonia due to hydrolysis, therefore contribute to the air pollution. The purpose of this study was to study the potential black liquor from pulp industry as urease inhibitor. Characterization of the black liquor was carried out by Spectrophotometer Fourier Transform Infra-Red (FTIR) and Thermal Gravimetric Analyzer (TGA) instruments. Meanwhile, the determination of ammonia levels was carried out using UV-spectrophotometer. The black liquor used in this process contains OH stretching, C=O stretching, an aromatic ring vibration, ring vibration, and guaiacil ring vibration indicating the presence of lignin. TGA primary weight loss in black liquor occurs above 200 °C. The addition of urease enzymes to urea tends to increase the release of ammonia. Meanwhile, the results showed that black liquor could prevent the nitrogen loss of urea.
Słowa kluczowe
Wydawca

Rocznik
Strony
213--218
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina, Komplek Universitas Pertamina, DKI Jakarta, Jakarta Selatan, Indonesia
  • Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina, Komplek Universitas Pertamina, DKI Jakarta, Jakarta Selatan, Indonesia
  • Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina, Komplek Universitas Pertamina, DKI Jakarta, Jakarta Selatan, Indonesia
  • Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pertamina, Komplek Universitas Pertamina, DKI Jakarta, Jakarta Selatan, Indonesia
  • Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina, Komplek Universitas Pertamina, DKI Jakarta, Jakarta Selatan, Indonesia, i.suryawan@universitaspertamina.ac.id
  • Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pertamina, Komplek Universitas Pertamina, DKI Jakarta, Jakarta Selatan, Indonesia
  • Study Program of Civil Engineering, Faculty of Engineering, Universitas Sebelas Maret, Jalan Ir Sutami 36A Surakarta, Jawa Tengah 57126, Indonesia
Bibliografia
  • 1. Abalos, D., van Groenigen, J.W., Philippot, L., Lubbers, I.M., & De Deyn, G.B. 2019. Plant trait-based approaches to improve nitrogen cycling in agroecosystems. Journal of Applied Ecology, 56(11), 2454–2466. https://doi.org/https://doi.org/10.1111/1365-2664.13489
  • 2. Afifah, A.S., Suryawan, I.W.K., & Sarwono, A. 2020. Microalgae production using photo-bioreactor with intermittent aeration for municipal wastewater substrate and nutrient removal. Communications in Science and Technology, 5(2), 107–111. https://doi.org/10.21924/cst.5.2.2020.200
  • 3. Apriani, R., Manik, N.N., Mahardhika, E.H., & Inayatullah, M.J. 2020. Study on the utilization of palm fruit waste as a pulp raw material organosolv method with hydrothermal pretreatment. Journal of Physics: Conference Series, 1456(1), 12003. https://doi.org/10.1088/1742-6596/1456/1/012003
  • 4. Baliga, V., Sharma, R., Miser, D., McGrath, T., & Hajaligol, M. 2003. Physical characterization of pyrolyzed tobacco and tobacco components. Journal of Analytical and Applied Pyrolysis, 66(1), 191–215. https://doi.org/https://doi.org/10.1016/S0165-2370(02)00114-6
  • 5. Darmadi, D. 2014. Pengolahan Limbah Cair Pabrik Pupuk Urea Menggunakan Advanced Oxidation Processes. Jurnal Rekayasa Kimia & Lingkungan, 10(1), 6–11. https://doi.org/10.23955/rkl.v10i1.2166
  • 6. Davin, L.B., & Lewis, N.G. 2005. Lignin primary structures and dirigent sites. Current Opinion in Biotechnology, 16(4), 407–415. https://doi.org/https://doi.org/10.1016/j.copbio.2005.06.011
  • 7. Gogoi, N., Baruah, K.K., & Meena, R.S. 2018. Grain Legumes: Impact on Soil Health and Agroecosystem BT - Legumes for Soil Health and Sustainable Management (R.S. Meena, A. Das, G.S. Yadav, & R. Lal (eds.); pp. 511–539). Springer Singapore. https://doi.org/10.1007/978-981-13-0253-4_16
  • 8. Haykiri-Acma, H., Yaman, S., & Kucukbayrak, S. 2010. Comparison of the thermal reactivities of isolated lignin and holocellulose during pyrolysis. Fuel Processing Technology, 91(7), 759–764. https://doi.org/https://doi.org/10.1016/j.fuproc.2010.02.009
  • 9. Ichihashi, Y., Date, Y., Shino, A., Shimizu, T., Shibata, A., Kumaishi, K., Funahashi, F., Wakayama, K., Yamazaki, K., Umezawa, A., Sato, T., Kobayashi, M., Kamimura, M., Kusano, M., Che, F.-S., O`Brien, M., Tanoi, K., Hayashi, M., Nakamura, R., … Nihei, N. 2020. Multi-omics analysis on an agroecosystem reveals the significant role of organic nitrogen to increase agricultural crop yield. Proceedings of the National Academy of Sciences, 117(25), 14552 LP – 14560. https://doi.org/10.1073/pnas.1917259117
  • 10. Jawaid, M., Thariq, M., & Saba, N. 2018. Durability and life prediction in biocomposites, fibre-reinforced composites and hybrid composites. Woodhead Publishing.
  • 11. Kim, D., Cheon, J., Kim, J., Hwang, D., Hong, I., Kwon, O.H., Park, W.H., & Cho, D. 2017. Extraction and characterization of lignin from black liquor and preparation of biomass-based activated carbon therefrom. Carbon Letters, 22(1), 81–88. https://doi.org/10.5714/CL.2017.22.081
  • 12. Machdar, I., Depari, S.D., Ulfa, R., Muhammad, S., Hisbullah, A.B., & Safrul, W. 2018. Ammonium Nitrogen Removal from Urea Fertilizer Plant Wastewater via Struvite Crystal Production. IOP Conference Series: Materials Science and Engineering, 358, 12026. https://doi.org/10.1088/1757-899x/358/1/012026
  • 13. Magdeldin, M., & Järvinen, M. 2020. Supercritical water gasification of Kraft black liquor: Process design, analysis, pulp mill integration and economic evaluation. Applied Energy, 262, 114558. https://doi.org/https://doi.org/10.1016/j.apenergy.2020.114558
  • 14. Nada, A.-A.M.A., Yousef, M.A., Shaffei, K.A., & Salah, A.M. 1998. Infrared spectroscopy of some treated lignins. Polymer Degradation and Stability, 62(1), 157–163. https://doi.org/https://doi.org/10.1016/S0141-3910(97)00273-5
  • 15. Porshnov, D., Ozols, V., Ansone-Bertina, L., Burlakovs, J., & Klavins, M. 2018. Thermal decomposition study of major refuse derived fuel components. Energy Procedia, 147, 48–53. https://doi.org/https://doi.org/10.1016/j.egypro.2018.07.032
  • 16. Prasetyo, I., Evila, T., Sri, P., & Ariyanto, T. 2019. Effect of Presence of Ammonia in Aqueous Solution on Urea Adsorption Capacity Using Porous Carbon. 1(01), 34–40.
  • 17. Ramli, N., Hussain, Z. edu. m., Shuib, A., Mansor, N., & Man, Z. 2014. The Potential of Quercetin in Psidium guajava L. Leaves Extract as Bioinhibitor for Controlled Released Fertilizer. Advanced Materials Research, 970, 16–19. https://doi.org/10.4028/www.scientific.net/AMR.970.16
  • 18. Reddy, N., Salam, A., & Yang, Y. 2007. Effect of lignin on the heat and light resistance of lignocellulosic fibers. Macromolecular Materials and Engineering, 292(4), 458–466. https://doi.org/10.1002/mame.200600446
  • 19. Reyes, L., Nikitine, C., Vilcocq, L., & Fongarland, P. 2020. Green is the new black-A review of technologies for carboxylic acid recovery from black liquor. Green Chemistry, 22(23), 8097–8115. https://doi.org/10.1039/d0gc02627a
  • 20. Silverstein, R.M., & Bassler, G.C. 1963. Spectrometric Identification of Organic Compounds. Journal of Medicinal Chemistry, 6(6), 826–827. https://doi.org/10.1021/jm00342a059
  • 21. Singh, A. K., & Chandra, R. 2019. Pollutants released from the pulp paper industry: Aquatic toxicity and their health hazards. Aquatic Toxicology, 211, 202–216. https://doi.org/https://doi.org/10.1016/j.aquatox.2019.04.007
  • 22. Sujoy, B., & Aparna, A. 2012. Isolation, partial purification, characterization and inhibition of urease (EC 3.5. 1.5) enzyme from the Cajanus cajan seeds. Asian Journal of Bio Science, 7(2) (2), 203–209. https://www.cabdirect.org/cabdirect/abstract/20133277761
  • 23. Suryawan, I., Septiariva, I.Y., Helmy, Q., Notodarmojo, S., Wulandari, M., Sari, N.K., Sarwono, A., & Jun-Wei, L. 2021. Comparison of Ozone Pre-Treatment and Post-Treatment Hybrid with Moving Bed Biofilm Reactor in Removal of Remazol Black 5. International Journal of Technology, 12(2).
  • 24. Suryawan, I.W.K., Prajati, G., Afifah, A.S., & Apritama, M.R. 2021. Nh3-n and cod reduction in endek (Balinese textile) wastewater by activated sludge under different do condition with ozone pretreatment. Walailak Journal of Science and Technology, 18(6), 1–11. https://doi.org/10.48048/wjst.2021.9127
  • 25. Swaminathan, S., Craven, B.M., & McMullan, R.K. 1984. The crystal structure and molecular thermal motion of urea at 12, 60 and 123 K from neutron diffraction. Acta Crystallographica Section B, 40(3), 300–306. https://doi.org/10.1107/S0108768184002135
  • 26. Umar, W., Ayub, M.A., Rehman, M.Z., Ahmad, H.R., Farooqi, Z.U.R., Shahzad, A., Rehman, U., Mustafa, A., & Nadeem, M. 2020. Nitrogen and Phosphorus Use Efficiency in Agroecosystems BT - Resources Use Efficiency in Agriculture (S. Kumar, R.S. Meena, & M.K. Jhariya (eds.); pp. 213–257). Springer Singapore. https://doi.org/10.1007/978-981-15-6953-1_7
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-cc0a9b78-497f-47ca-bcf0-beeaf9201ff7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.