Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 46, No. 2 | 159--172
Tytuł artykułu

A Statistical Evaluation of The Depth of Inheritance Tree Metric for Open-Source Applications Developed in Java

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Depth of Inheritance Tree (DIT) metric, along with other ones, is used for estimating some quality indicators of software systems, including open-source applications (apps). In cases involving multiple inheritances, at a class level, the DIT metric is the maximum length from the node to the root of the tree. At an application (app) level, this metric defines the corresponding average length per class. It is known, at a class level, a DIT value between 2 and 5 is good. At an app level, similar recommended values for the DIT metric are not known. To find the recommended values for the DIT mean of an app we have proposed to use the confidence and prediction intervals. A DIT mean value of an app from the confidence interval is good since this interval indicates how reliable the estimate is for the DIT mean values of all apps used for estimating the interval. A DIT mean value higher than an upper bound of prediction interval may indicate that some classes have a large number of the inheritance levels from the object hierarchy top. What constitutes greater app design complexity as more classes are involved. We have estimated the confidence and prediction intervals of the DIT mean using normalizing transformations for the data sample from 101 open-source apps developed in Java hosted on GitHub for the 0.05 significance level.
Wydawca

Rocznik
Strony
159--172
Opis fizyczny
Bibliogr. 21 poz., tab.
Twórcy
  • Department of Software of Automated Systems
  • Finance Department, Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Ave., 9, Mykolaiv, 54025, Ukraine
  • Department of Software of Automated Systems
Bibliografia
  • [1] Barkmann, H., Lincke, R., Lowe, W., Quantitative evaluation of software quality metrics in open-source projects, in: Proceedings of the 2009 International Conference on Advanced Information Networking and Applications Workshops, Bradford, UK, 2009, 1067-1072. https://doi.org/10.1109/WAINA.2009.190.
  • [2] Bouktif, S., Sahraoui, H., Ahmed, F., Predicting stability of open-source software systems using combination of Bayesian classifiers, ACM Transactions on Management Information Systems, 5, 1, Article 3, 2014, 1-26. https://doi.org/10.1145/2555596.
  • [3] Bousquet, L.d., Shaheen, M.R., Relation between depth of inheritance tree and number of methods to test, in: Proceedings of the 1st International Conference on Software Testing, Verification, and Validation, Lillehammer, Norway, 2008, 161-170. https://doi.org/10.1109/ICST.2008.34.
  • [4] Box, G.E.P., Cox, D.R., An analysis of transformations. Journal of the Royal Statistical Society. Series B (Methodological), 26, 2, 1964, 211-252.
  • [5] Chidamber, S.R., Kemerer, C.F., A metrics suite for object oriented design. IEEE Transactions on Software Engineering, 20, 6, 1994, 476-493. http://dx.doi.org/10.1109/32.295895.
  • [6] Depth of Inheritance Tree, https://www.cachequality.com/docs/metrics/depth-inheritance-tree, last accessed 2020/04/16.
  • [7] Elahi, E., Kanwal, S., Asif, A.N., A new ensemble approach for software fault prediction, in: Proceedings of the 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 2020, 407-412. https://doi.org/10.1109/IBCAST47879.2020.9044596.
  • [8] Foucault, M., Teyton, C., Lo, D., Blanc, X., Falleri, J.R., On the usefulness of ownership metrics in open-source software projects, Information and Software Technology, 64, 2015, 102-112. https://doi.org/10.1016/j.infsof.2015.01.013.
  • [9] Freedman, D., Pisani, R., Purves, R., Statistics. 4th edn. Wiley, 2007.
  • [10] Grubbs, F., Procedures for detecting outlying observations in samples, Technometrics, 11, 1, 1969, 1-21.
  • [11] Johnson, R.A., Wichern, D.W., Applied multivariate statistical analysis, Pearson Prentice Hall, 2007.
  • [12] Kendall, M.G., Stuart, A., The advanced theory of statistics. Vol. 1, Distribution Theory. 2nd edn., Charles Griffin & Company Limited, London, 1963.
  • [13] Makkar, G., Chhabra, J.K., Challa, R.K., Object oriented inheritance metric-reusability perspective, in: Proceedings of the International Conference on Computing, Electronics and Electrical Technologies (ICCEET), Kumaracoil, India, 2012, 852-859. https://doi.org/10.1109/ICCEET.2012.6203815.
  • [14] Mishra, D., New Inheritance Complexity Metrics for Object-Oriented Software Systems: An Evaluation with Weyuker’s Properties, Computing and Informatics, 30, 2, 2011, 267-293.
  • [15] Molnar A.J., Neamţu A., Motogna S., Evaluation of software product quality metrics, in: Damiani E., Spanoudakis G., Maciaszek L. (eds.), Evaluation of Novel Approaches to Software Engineering. ENASE 2019. Communications in Computer and Information Science, vol. 1172, Springer, Cham, 2020, 163-187. https://doi.org/10.1007/978-3-030-40223-5_8.
  • [16] Prykhodko, S.B., Statistical anomaly detection techniques based on normalizing transformations for non-Gaussian data, in: Proceedings of the International Conference on Computational Intelligence (Results, Problems and Perspectives), Kyiv-Cherkasy, Ukraine, 2015, 286-287.
  • [17] Prykhodko, S., Prykhodko, N., Makarova, L., Pugachenko, K., Detecting outliers in multivariate non-Gaussian data on the basis of normalizing transformations, in: Proceedings of the 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), Kyiv, Ukraine, 2017, 846-849. https://doi.org/10.1109/UKRCON.2017.8100366.
  • [18] Prykhodko, N., Prykhodko, S., Vorona, M., The non-linear regression model to estimate the part of NPLS in the whole loan portfolio of Ukrainian banks, in: Proceedings of the 2018 IEEE First International Conference on System Analysis & Intelligent Computing (SAIC), Kyiv, Ukraine, 2018, 261-265. https://doi.org/10.1109/SAIC.2018.8516899.
  • [19] Rathore, S.S., Kumar, S., A study on software fault prediction techniques, Artificial Intelligence Review, 51, 2, 2019, 255-327. https://doi.org/10.1007/s10462-017-9563-5.
  • [20] Shaheen, M.R., Bousquet, L.d., Is depth of inheritance tree a good cost prediction for branch coverage testing? in: Proceedings of the First International Conference on Advances in System Testing and Validation Lifecycle, Porto, Portugal, 2009, 42-47. https://doi.org/10.1109/VALID.2009.11.
  • [21] Shatnawi, R., Empirical study of fault prediction for open-source systems using the Chidamber and Kemerer metrics, IET Software, 8, 3, 2014, 113-119. http://dx.doi.org/10.1049/iet-sen.2013.0008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-cb73748b-8b43-48c9-8c26-2548cd8f2d51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.