Warianty tytułu
Języki publikacji
Abstrakty
The issue of accumulation of dust and other pollutants on the surface of photovoltaic modules was thoroughly analysed over the years. One of the first surveys in this field of knowledge linked pollutant accumulation on the module surface with transmittance loss of its glass covering, which leads to lessened amount of solar radiation reaching solar cells. First stage of this accumulation process is linear transparency loss, and second stage - molecule agglomeration and settlement some grains on the already existing layer of dust. Additionally, the pace of working parameters reduction for photovoltaic installation is influenced by the type of dust itself. Molecules with smaller grains cover the surface much more densely, therefore limiting the amount of light passing though the top glass layer far more than molecules with bigger grains. The aim of the carried out study was to find the relationship between dust surface density and change in electrical parameters. Such approach makes it possible to compare electrical and physical parameters of different photovoltaic modules. Additionally, glass coverage itself was noted to have a significant impact on the overall decrease in working parameters of PV modules.
Czasopismo
Rocznik
Tom
Strony
173--182
Opis fizyczny
Bibliogr. 17 poz., wykr., fot., il., tab.
Twórcy
autor
- Department of Energy Conversion and Storage, Faculty of Chemistry, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland, phone +48 58 347 18 74
autor
- Department of Energy Conversion and Storage, Faculty of Chemistry, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland, phone +48 58 347 18 74, ewa.klugmann-radziemska@pg.edu.pl
Bibliografia
- [1] Rodziewicz T, Rajfur M, Wacławek M. Ecol Chem Eng S. 2020;27(1);9-39. DOI: 10.2478/eces-2020-0001.
- [2] Klugmann-Radziemska E, Rudnicka M. Ecol Chem Eng S. 2020;27(3);335-46. DOI: 10.2478/eces-2020-0021.
- [3] Vivar M, Herrero R, Anton I, Martinez-Moreno F, Sala G, Blakers AW, et al. Sol Energy. 2010;84:1327-35. DOI: 10.1016/j.solener.2010.03.031.
- [4] Al-Hasan A, Ghoneim AA. Int J Sustain Energy. 2005;24:187-97. DOI: 10.1080/14786450500291834.
- [5] Abderrezek M, Fathi M. Elektron Elektrotech. 2018;24:41-5. DOI: 10.5755/j01.eie.24.1.20158.
- [6] Cabanillas R, Munguia H. J Renew Sustain Energy. 2011;3. DOI: 10.1063/1.3622609.
- [7] Rao A, Pillai R, Mani M, Ramamurthy P. Energy Procedia. 2013;54:690-700. DOI: 10.1016/j.egypro.2014.07.310.
- [8] Gandhi AT, Gupta A, Vijay BS. Int J Renew Energy Res. 2014;4:628-34. Available from: https://www.ijrer.org/ijrer/index.php/ijrer/article/view/1390/pdf.
- [9] Al-Hasan A. Sol Energy. 1998;63:323-33. DOI: 10.1016/S0038-092X(98)00060-7.
- [10] Beattie NS, Moir RS, Buffoni G. Renew Energy. 2012;48:448-52. DOI: 10.1016/S0038-092X(98)00060-7.
- [11] Wang J, Gong H, Zou Z. JOCET. 2017;5:217-21. DOI: 10.18178/jocet.2017.5.3.372.
- [12] Tanesab J, Parlevliet D, Whale J, Urmee T. Sustain Energy Technol Assess. 2019;31:347-54. DOI: 10.1016/j.seta.2018.12.024.
- [13] Jaszczur M, Hassan Q, Teneta J, Styszko K, Nawrot W, Hanus R. MATEC Web Conf. 2018;240:04005. DOI: 10.1051/matecconf/201824004005.
- [14] El-Shobokshy MS, Hussein FM. Renew Energy. 1993;3:585-90. DOI: 10.1016/0960-1481(93)90064-N.
- [15] Styszko K, Jaszczur M, Teneta J, Hassan Q, Burzynska P, Marcinek E, et al. Environ Sci Pollut Res. 2019;26:8393-401. DOI: 10.1007/s11356-018-1847-z.
- [16] Paudyal BR, Shakya SR. Sol Energy. 2016;135:103-10. DOI: 10.1016/j.solener.2016.05.046.
- [17] Yadav SK, Bajpai U. IJETER. 2017;5:67-72. DOI: 10.1016/0960-1481(93)90064-N.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-cae319e9-8944-46b4-9cf0-6ab725b1efd5