Warianty tytułu
Application of selected flavonoids as active substances for regenerative medicine
Języki publikacji
Abstrakty
Przedstawiono przegląd literatury na temat systemów dostarczania leków, charakterystyki poszczególnych flawonoidów i sposobów dostarczania ich do organizmu.
A review of the literature on drug delivery systems, the characteristics of individual flavonoids as well as the ways of delivering them into the body.
Czasopismo
Rocznik
Tom
Strony
12--18
Opis fizyczny
Bibliogr. 49 poz., rys.
Twórcy
autor
- Katedra Inżynierii Materiałowej, Wydział Inżynierii Materiałowej i Fizyki, Politechnika Krakowska
autor
- Katedra Inżynierii Materiałowej, Wydział Inżynierii Materiałowej i Fizyki, Politechnika Krakowska
autor
- Katedra Inżynierii Materiałowej, Wydział Inżynierii Materiałowej i Fizyki, Politechnika Krakowska, karina.niziolek@doktorant.pk.edu.pl
autor
- Katedra Inżynierii Materiałowej, Wydział Inżynierii Materiałowej i Fizyki, Politechnika Krakowska
Bibliografia
- [1] Anselmo A.C., Mitragotri S.: An overview of clinical and commercial impact of drug delivery systems. J. Control. Rel. 190 (2014) 15-28.
- [2] Park H., Otte A., Park K.: Evolution of drug delivery systems. From 1950 to 2020 and beyond. J. Control. Rel. 342 (2022) 53-65, doi: 10.1016/J.JCONREL.2021.12.030.
- [3] Bonaccorso A., Privitera A., Grasso M., Salamone S., Carbone C., Pignatello R., Musumeci T., Caraci F., Caruso G.: The therapeutic potential of novel carnosine formulations. Perspectives for drug development. Pharmaceuticals 16 (2023).
- [4 Laxminarayan R., Duse A., Wattal C. et al.: Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 13 (2013) 1057-1098, doi: 10.1016/S1473-3099(13)70318-9.
- [5] Maragakis L.L., Perencevich E.N., Cosgrove S.E.: Clinical and economic burden of antimicrobial resistance. Expert Rev. Anti Infect. Ther. 6 (2008) 751-763, doi: 10.1586/14787210.6.5.751.
- [6] Lode H.M.: Clinical impact of antibiotic-resistant gram-positi ve pathogens. Clin. Microbiol. Infect. 15 (2009) 212-217, doi: 10.1111/j.1469-0691.2009.02738.x.
- [7] Träger D., Niziołek K.: Zastosowania systemów uwalniania wankomycyny do regeneracji tkanki kostnej. Inż. Mat. 1 (2023) 20-26, doi: 10.15199/28.2023.4.2.
- [8] Yoon Y., Kinam P.: Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch. Pharm. Res. 27 (1) (2004), 1-12, doi: 10.1007/Bf02980037.
- [9] Bhavsar M.D., Tiwari S.B., Amiji M.M.: Formulation optimization for the nanoparticles-in-microsphere hybrid oral delivery system using factorial design. J. Control. Rel. 110 (2006) 422-430, doi: 10.1016/j.jconrel.2005.11.001.
- [10] Sheikh Hasan A., Socha M., Lamprecht A, El Ghazouani F., Sapin A., Hoffman M., Maincent P., Ubrich N.: Effect of the microencapsulation of nanoparticles on the reduction of burst release. Int. J. Pharm. 344 (1-2) (2007) 53-61, doi: 10.1016/j. Ijpharm.2007.05.066.
- [11] Adepu S., Ramakrishna S.: Controlled drug delivery systems. Current status and future directions. Molecules 26 (2021).
- [12] Liechty W.B., Kryscio D.R., Slaughter B.V., Peppas N.A.: Polymers for drug delivery systems. Annu. Rev. Chem. Bio mol. Eng. 1 (2010) 149-173, doi: 10.1146/annurev-chembioeng-073009-100847.
- [13] Hardenia A., Maheshwari N., Hardenia S.S., Dwivedi S.K., Maheshwari R., Tekade R.K.: Scientific rationale for designing controlled drug delivery systems. W Basic fundamentals of drug delivery, Tekade R.K. (red.), Elsevier (2018), 1-28.
- [14] Mills J.K., Needham D.: Targeted drug delivery. Exp. Opin. Ther. Patents 9 (11) (1999) 1499-1513, doi: 10.1517/13543776.9.11.1499.
- [15] Manish G., Vimukta S.: Targeted drug delivery system. A review. Res. J. Chem. Sci. 2 (1) (2011) 135-138.
- [16] Owen S.C., Chan D.P.Y., Shoichet M.S.: Polymeric micelle stability. Nano Today 7 (2012) 53-65.
- [17] Kwon G.S., Okano T.: Polymeric micelles as new drug carriers. Adv. Drug Deliv. Rev. 2 (21) (1996) 107-116.
- [18] Croy S.R., Kwon G.S.: Polymeric micelles for drug delivery. Curr. Pharm. Des. 36 (12) (2006) 4669-4684.
- [19] Caminade A.M., Turrin C.O.: Dendrimers for drug delivery. J. Mater. Chem. B 2 (2014) 4055-4066, doi: 10.1039/c4tb00171k.
- [20] Caminade A.M., Laurent R., Majoral J.P.: Characterization of dendrimers. Adv. Drug Deliv. Rev. 57 (2005) 2130-2146.
- [21] Boas U., Heegaard P.M.H.: Dendrimers in drug research. Chem. Soc. Rev. 33 (2004) 43-63, doi: 10.1039/b309043b.
- [22] Hoare T.R., Kohane D.S.: Hydrogels in drug delivery. Progress and challenges. Polymer (Guildf) 49 (2008) 1993-2007.
- [23] Narayanaswamy R., Torchilin V.P.: Hydrogels and their applica tions in targeted drug delivery. Molecules 3 (24) (2019) 603.
- [24] Ganji F., Vasheghani-Farahani E.: Hydrogels in controlled drug delivery systems. Iran Polym. J. 18 (2009) 63-88
- [25] Peppas N.A.: Hydrogels and drug delivery. COCIS 2 (1997) 531–537, doi: 10.1016/S1359-0294(97)80103-3.
- [26] Harbone J.B., Williams C.A.: Advances in flavonoid reaserch since 1992. Phytochemistry 6 (55) (2000) 481-504.
- [27] Chávez-González M.L., Sepúlveda L., Verma D.K., Luna-García H.A., Rodríguez-Durán L.V., Ilina A., Aguilar C.N.: Conventional and emerging extraction processes of flavonoids. Processes 8 (2020) 434, doi: 10.3390/pr8040434.
- [28] Lwashina T.: The structure and distribution of the flavonoids in plants. J. Plant Res. 3 (113) (2000) 287-299.
- [29] Majewska M., Czeczot H.: Flawonoidy w profilaktyce i terapii. Terapia Leki 5 (65) (2009) 369-377.
- [30] Sharma K., Mahato N., Lee Y.R.: Extraction, characterization and biological activity of citrus flavonoids. Rev. Chem. Eng. 35 (2019) 265-284, doi: 10.1515/revce-2017-0027.
- [31] Es-Safi N.-E., Ghidouche S., Ducrot P.H.: Flavonoids. Hemisyn thesis, reactivity, characterization and free radical scavenging activity. Molecules 12 (2007) 2228-2258.
- [32] Ekalu A., Habila J.D.: Flavonoids. Isolation, characterization, and health benefits. Beni-Suef Univ. J. Basic Appl. Sci. 9 (2020) 45.
- [33] Chaves J.O., de Souza M.C., da Silva L.C. et al.: Extraction of flavonoids from natural sources using modern techniques. Front. Chem. 8 (2020), doi: 10.3389/fchem.2020.507887.
- [34] Kobylińska A., Janas K.M.: Kwercetyna. Ważny flawonoid w życiu roślin. Kosmos 1 (64) (2015) 113-127.
- [35] Marczyński Z., Bodek K.H.: Wpływ chitozanu na trwałość i para metry morfologiczne tabletek zawierających ekstrakt z ziela wierzbownicy drobnokwiatowej (Epilobium parviflorum Schreb.). Prog. Chem. Appl. Chitin Deriv. XII (2007), monografia.
- [36] Woo J.-T., Nakagawa H., Notoya M., Yonezawa T., Udagawa N., Lee I.-S., Ohnishi M., Hagiwara H., Nagai K.: Quercetin suppresses bone resorption by inhibiting the differentiation and activation of osteoclasts. Biol. Pharm. Biul. 4 (27) (2004) 504-509.
- [37] Wattel A., Kamel S., Mentaverri R., Lorget F., Prouillet C., Petit J.-P., Fardelonne P., Brazier M.: Potent inhibitory effect of naturally occurring avonoids quercetin and kaempferol on in vitro osteoclastic bone resorption. Biochem. Pharmacol. 1 (65) (2003) 35-42.
- [38] Notoya M., Tsukamoto Y., Nishimura H., Woo J.T., Nagai K., Lee I.S., Hagiwara H.: Quercetin, a flavonoid, inhibits the pro liferation, differentiation, and mineralization of osteoblasts in vitro. Eur. J. Pharmacol. 485 (2004) 89-96, doi: 10.1016/j. ejphar.2003.11.058.
- [39] Phan T.T., See P., Tran E., Nguyen T.T.T., Chan S.Y., Lee S.T., Huynh H.: Suppression of insulin-like growth factor signalling pathway and collagen expression in keloid-derived fibroblasts by quercetin. Its therapeutic potential use in the treatment and/ or prevention of keloids. Br. J. Dermatol. 3 (148) (2003) 544-552.
- [40] Mroczek J.: Zastosowanie apigeniny jako modulatora mineralizacji zachodzącego pęcherzykach macierzy wydzielanych przez kości człowieka. Praca doktorska. Uniwersytet Warszawski (2022).
- [41] Reutelingsperger C.P.M., Van Heerde W.L., Annexin V.: The regulator of phosphatidylserine-catalyzed inflammation and coagulation during apoptosis. Cell. Mol. Life Sci. 6 (53) (1997) 527-532.
- [42] Hetz E., Liersch R., Schieder O.: Genetic investigations on Silybum marianum and S. eburneum with respect to leaf colour, outcrossing ratio, and flavonolignan composition. Planta Med. 1 (61) (1995) 54-57.
- [43] Křen V., Walterová D.: Silybin and silymarine - new effects and applications. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 1 (149) (2005) 29-41.
- [44] Yousaf A.M., Malik U.R., Shahzad Y., Mahmood T., Hussain T.: Silymarin-laden PVP-PEG polymeric composite for enhanced aqueous solubility and dissolution rate. Preparation and in vitro characterization. J. Pharm. Anal. 9 (2019) 34-39, doi: 10.1016/j. jpha.2018.09.003.
- [45] Nofal A., Ibrahim A.S.M., Nofal E., Gamal N., Osman S.: Topical silymarin versus hydroquinone in the treatment of melasma. A comparative study. J. Cosmet. Dermatol. 18 (2019) 263-270, doi: 10.1111/jocd.12769.
- [46] Olas B.: Resweratrol jako dobroczyńca w profilaktyce chorób układu. Kosmos 2-3 (55) (2006) 277-285.
- [47] Fabbrocini G., Staibano S., De Rosa G. et al.: Resveratrol-containing gel for the treatment of acne vulgaris. A single-blind, vehic le-controlled, pilot study. Am. J. Clin. Dermatol. 2 (12) (2011) 133-141.
- [48] Zheng Y., Yuan W., Liu H., Huang S., Bian L., Guo R.: Injectable supramolecular gelatin hydrogel loading of resveratrol and histatin-1 for burn wound therapy. Biomater. Sci. 17 (8) (2020) 4810-4820, doi: 10.1039/d0bm00391c.
- [49] Kang M.C., Cho K., Lee J.H., Subedi L., Yumnam S., Kim S.Y.: Effect of resveratrol-enriched rice on skin inflammation and pruritus in the NC/Nga mouse model of atopic dermatitis. Int. J. Mol. Sci. 6 (20) (2019) 1428, doi: 10.3390/ijms20061428.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ca6d75dd-164e-48a3-9434-2f83412fc2b5