Czasopismo
2024
|
Vol. 42, No. 2
|
52--69
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Fire damage poses a significant risk to reinforced concrete structures throughout their lifespan. Fire exposure influences the stress-strain properties and durability of concrete, despite its non-flammability. Therefore, the strengthening approach is an economic option for lengthening their lifespan. This paper aims to conduct an experimental investigation into retrofitting heat-damaged fiber-reinforced concrete cylinders using welded wire mesh (WWM) configurations. Four concrete mixes were investigated. In total, 48 concrete cylinders were tested under axial compression until failure. The primary variables considered in the testing program consisted of (i) the influence of various fiber types (steel fiber (SF), polypropylene (PP), and hybrid fibers (SF+PP)); (ii) exposure temperature (26°C and 600°C); and (iii) WWM strengthening. Exposure to a temperature of 600°C led to a significant reduction in the compressive strength, ranging from 23.7% to 53.3%, while the inclusion of fibers has a substantial effect on the compressive strength of concrete, regardless of fiber type, with an increased ratio reaching up to 34.7%. The finding also clearly shows that the strengthening of heat-damaged specimens with WWM jacketing resulted in a 38.8%, 4.9%, and 9.4% increase in compressive strength for SF, PP, and SF+PPF specimens, respectively, compared to unheated control specimens. The suggested approaches to strengthening, which involve the use of WWM jacketing with two layers, successfully restored and surpassed the initial concrete compressive strength of the specimens that were damaged due to exposure to high temperatures.
Czasopismo
Rocznik
Tom
Strony
52--69
Opis fizyczny
Bibliogr. 57 poz., rys., tab.
Twórcy
autor
- Department of Civil Engineering, College of Engineering, King Saud University Riyadh, Saudi Arabia, aabadel@ksu.edu.sa
Bibliografia
- [1] Sarker P, Kelly S, Yao Z. Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Mater Des. 2014;29: 584–592. doi: 10.1016/j.matdes.2014.06.059
- [2] Shaikh FUA, Vimonsatit V. Effect of cooling methods on residual compressive strength and cracking behavior of fly ash concretes exposed at elevated temperatures. Fire Mater. 2016;40: 335–350. doi: 10.1002/FAM.2276
- [3] Abadel A, Elsanadedy H, Almusallam T, Alaskar A, Abbas H, Al-Salloum Y. Residual compressive strength of plain and fiber reinforced concrete after exposure to different heating and cooling regimes. Eur J Environ Civ Eng. 2021;26: 6746–6765. doi: 10.1080/19648189.2021.1960898
- [4] Li Q, Yuan G, Shu Q. Effects of heating/cooling on recovery of strength and carbonation resistance of firedamaged concrete. Mag Concr Res. 2015;66: 925–936. doi: 10.1680/MACR.14.00029
- [5] Kee S, Kang J, Choi B, Kwon J, Candelaria M. Evaluation of static and dynamic residual mechanical properties of heat-damaged concrete for nuclear reactor auxiliary buildings in korea using elastic wave velocity measurements. Materials (Basel). 2019;12: 2695. doi: 10.3390/ma12172695
- [6] Ma C, Garcia R, Yung S, Awang A, Omar W, Pilakoutas K. Strengthening of pre-damaged concrete cylinders using post-tensioned steel straps. Proc Inst Civ Eng – Struct Build. 2019;172(10): 703–711. doi: 10.1680/jstb u.18.00031
- [7] Abadel AA, Alharbi YR. Confinement effectiveness of CFRP strengthened ultra-high performance concrete cylinders exposed to elevated temperatures. Mater Sci. 2021;39: 478–490. doi: 10.2478/MSP-2021-0040
- [8] Zhai C, Chen L, Fang Q, Chen W, Jiang X. Experimental study of strain rate effects on normal weight concrete after exposure to elevated temperature. Mater Struct. 2017;50: 40.
- [9] Martins DJ, Correia JR, de Brito J. The effect of high temperature on the residual mechanical performance of concrete made with recycled ceramic coarse aggregates. Fire Mater. 2016;40: 289–304.
- [10] Abadel AA. Rehabilitation of post-heated rectangular reinforced concrete columns using different strengthening configuration. Struct. Concr. 2023. doi: 10.1002/SUCO.202300521
- [11] Khan MS, Abbas H. Performance of concrete subjected to elevated temperature. Eur J Env. Civ En. 2016;20: 532–543.
- [12] Abadel AA, Khan MI, Masmoudi R. Axial capacity and stiffness of post-heated circular and square columns strengthened with carbon fiber reinforced polymer jackets. Structures. 2021;33: 2599–2610. doi: 10.1016/j.istruc.2021.05.081
- [13] Abadel AA, Masmoudi R, Iqbal Khan M. Axial behavior of square and circular concrete columns confined with CFRP sheets under elevated temperatures: Comparison with welded-wire mesh steel confinement. Structures. 2022;45: 126–144. doi: 10.1016/J.ISTRUC.2022.09.026
- [14] Drzymała T, Jackiewicz-Rek W, Tomaszewski M, Kuś A, Gałaj J, Šukys R. Effects of high temperature on the properties of high performance concrete (HPC). ProcediaEng. 2017;172: 256–263.
- [15] Elsanadedy HM. Residual compressive strength of high-strength concrete exposed to elevated temperatures. Adv Mater Sci Eng. 2019.
- [16] Abbas H, Al-Salloum YA, Elsanadedy HM, Ann ATH. Models for prediction of residual strength of HSC after exposure to elevated temperature. Fire Saf J. 2019;106: 13–28.
- [17] Al-Salloum YA, Elsanadedy HM, Abadel AA. Behavior of FRP-confined concrete after high temperature exposure. Constr Build. 2011;25: 838–850. doi: 10.1016/j.conbuildmat.2010.06.103
- [18] Phan LT, Lawson JR, Davis FL. Effects of elevated temperature exposure on heating characteristics, spalling, and residual properties of high performance concrete. Mater Struct. 2001 342. 2001;34: 83–91. doi: 10.1007/BF02481556
- [19] Vkr K, Wang TC, Cheng FP. Predicting the fire resistance behaviour of high strength concrete columns. Cem Concr Comp 2004;26: 141–153.
- [20] Aslani F, Bastami M. Constitutive relationships for normal-and high-strength concrete at elevated temperatures. ACI Mater J. 2011;108: 355–364. doi: 10.14359 /51683106
- [21] Abadel A, Abbas H, Albidah A, Almusallam T, Al-Salloum Y. Effectiveness of GFRP strengthening of normal and high strength fiber reinforced concrete after exposure to heating and cooling. Eng Sci Technol an Int J. 2022;36: 101147. doi: 10.1016/J.JESTCH.2022.1011 47
- [22] Gong W, Ueda T. Basic study on chloride-induced steel corrosion in concrete subjected to heating up to 300°C. J Soc Mater Sci Japan. 2018;67: 738–745. doi: 10.247 2/jsms.67.738
- [23] Choe G, Kim G, Gucunski N, Lee S. Evaluation of the mechanical properties of 200 MPa ultra-high-strength concrete at elevated temperatures and residual strength of column. Constr Build Mater. 2015;86: 159–168.
- [24] Lee C, Kee S, Kang J, Choi B, Lee J. Interpretation of impact-echo testing data from a fire-damaged reinforced concrete slab using a discrete layered concrete damage model. Sensors. 2020;20: 5838. doi: 10.3390/s20205838
- [25] Vu G, Timothy J, Saenger E, Meschke G. Damage identification in concrete using multiscale computational modeling and convolutional neural networks. Pamm. 2021;21. doi: 10.1002/pamm.202100249
- [26] Li Z, Xu J, Bai E. Static and dynamic mechanical properties of concrete after high temperature exposure. Mater Sci Eng. 2012;544: 27–32.
- [27] Chen L, Fang Q, Jiang X, Ruan Z, Hong J. Combined effects of high temperature and high strain rate on normal weight concrete. Int J Impact Eng. 2016;2015: 25–37.
- [28] Xiao J, Li Z, Xie Q, Shen L. Effect of strain rate on compressive behaviour of high-strength concrete after exposure to elevated temperatures. Fire Saf J. 2016;83: 25–37. doi: 10.1016/J.FIRESAF.2016.04.006
- [29] Poon CS, Azhar S, Anson M, Wong YL. Comparison of the strength and durability performance of normaland high-strength pozzolanic concretes at elevated temperatures. Cem Concr Res. 2001;31: 1291–1300. doi: 10.1016/S0008-8846(01)00580-4
- [30] Bastami M, Chaboki-Khiabani A, Baghbadrani M, Kordi M. Performance of high strength concretes at elevated temperatures. Sci Iran. 2011;18: 1028–1036. doi: 10.1016/j.scient.2011.09.001
- [31] Ning X, Li J, Li Y. An explorative study into the influence of different fibers on the spalling resistance and mechanical properties of self-compacting concrete after exposure to elevated temperatures. Appl Sci. 2022;12: 12779. doi: 10.3390/APP122412779
- [32] Freitas Resende H, Nascimento Arroyo F, Dias Reis E, Chahud E, Ferreira dos Santos H, Tostes Linhares JA, Garcez de Azevedo AR, Christoforo AL, Melgaço Nunes Branco LA. Estimation of physical and mechanical properties of high-strength concrete with polypropylene fibers in high-temperature condition. J Mater Res Technol. 2023;24: 8184–8197. doi: 10.1016/J.JMRT.2 023.05.085
- [33] Bayasi Z, Al Dhaheri M. Effect of exposure to elevated temperature on polypropylene fiber-reinforced concrete. Mater J. 2002;99: 22–26.
- [34] Bangi MR, Horiguchi T. Effect of fibre type and geometry on maximum pore pressures in fibre-reinforced high strength concrete at elevated temperatures. Cem Concr Res. 2012;42: 459–466. doi: 10.1016/J.CEMCONRES.2011.11.014
- [35] Novák J, Kohoutková A. Fire response of Hybrid Fiber Reinforced Concrete to High Temperature. Procedia Eng. 2017;172: 784–790. doi: 10.1016/j.proeng.201 7.02.123
- [36] Varona FB, Baeza FJ, Bru D, Ivorra S. Influence of high temperature on the mechanical properties of hybrid fibre reinforced normal and high strength concrete. Constr Build Mater. 2018;159: 73–82. doi: 10.1016/J.CONB UILDMAT.2017.10.129
- [37] Siddika A, Shojib M, Hossain M, Mamun M, Alyousef R, Amran M. Flexural performance of wire mesh and geotextile-strengthened reinforced concrete beam. Sn Appl Sci. 2019;1. doi: 10.1007/s42452-019-1373-8
- [38] Dębska A, Gwoździewicz P, Seruga A, Balandraud X, Destrebecq J. The application of ni–ti sma wires in the external prestressing of concrete hollow cylinders. Materials (Basel). 2021;14: 1354. doi: 10.3390/ma1406 1354
- [39] El-sayed TA. Axial compression behavior of ferrocement geopolymer HSC Columns. Polym. 2021;13: 3789. doi: 10.3390/POLYM13213789
- [40] Mourad SM, Shannag MJ. Repair and strengthening of reinforced concrete square columns using ferrocement jackets. Cem. 2012;34: 288–294. doi: 10.1016/j.cemconcomp.2011.09.010
- [41] Elsibaey M, Awadallah Z, Zakaria M, Farghal O. Strengthening of reinforced concrete square columns by means of ferro cement jacket. Jes J Eng Sci. 2020;48(5): 888–909. doi: 10.21608/jesaun.2020.118571
- [42] Eltaly BA, Shaheen YB, EL-boridy AT, Fayed S. Ferrocement composite columns incorporating hollow core filled with lightweight concrete. Eng Struct. 2023;280: 115672. doi: 10.1016/j.engstruct.2023.115672
- [43] Alobaidy QNA, Abdulla AI, Al-Mashaykhi M. Shear behavior of hollow ferrocement beam reinforced by steel and fiberglass meshes. Tikrit J Eng Sci. 2022;29: 27–39. doi: 10.25130/tjes.29.4.4
- [44] Mabrouk R, Awad M, Abdelkader N, Kassem M. Strengthening of reinforced concrete short columns using ferrocement under axial loading. J Eng Res. 2022;6(3): 32-48. doi: 10.21608/erjeng.2022.154329.1083
- [45] Hadi MN, Algburi AHM, Sheikh MN, Carrigan AT. Axial and flexural behaviour of circular reinforced concrete columns strengthened with reactive powder concrete jacket and fibre reinforced polymer wrapping. Constr Build Mater. 2018;172: 717–727. doi: 10.1016/j.conbuildmat.2018.03.196
- [46] Kaish ABMA, Jamil M, Raman SN, Zain MFM, Nahar L. Ferrocement composites for strengthening of concrete columns: A review. Constr Build Mater. 2018;160: 326–340. doi: 10.1016/J.CONBUILDMAT.2017.11.054
- [47] Kondraivendhan B, Pradhan B. Effect of ferrocement confinement on behavior of concrete. Constr Build. 2009;23: 1218–1222.
- [48] Harmathy TZ, Berndt JE. Hydrated Portland cement and lightweight concrete at elevated temperatures. Am Concr Inst. 1966;63: 93–112.
- [49] ISO. Fire-resistance tests – elements of building construction – part 1: General requirements. 1999. https://www.iso.org/standard/2576.html (accessed December 25, 2021).
- [50] ASTM-C39. Standard Test Method for Compressive Strength of Cylindrical Concrete. West Conshohocken, PA: ASTM International, 2021. https://www.astm.org/c 0039_c0039m-21.html%0Ahttps://www.astm.org/Stand ards/C39
- [51] Al-Salloum YA, Almusallam TH, Elsanadedy HM, Iqbal RA. Effect of elevated temperature environments on the residual axial capacity of RC columns strengthened with different techniques. Constr Build Mater. 2016;115: 345–361. doi: 10.1016/J.CONBUILDMAT.2016.04. 041
- [52] Elsanadedy H, Almusallam T, Al-Salloum Y, Iqbal R. Effect of high temperature on structural response of reinforced concrete circular columns strengthened with fiber reinforced polymer composites. J Compos Mater. 2017;51: 333–355. doi: 10.1177/0021998316645171/ASSET/IMAGES/LARGE/10.1177_0021998316645171-FIG20.JPEG
- [53] Alshaikh, I. M., Abu Bakar, B. H., Alwesabi, E. A., Abadel, A. A., Alghamdi, H., & Wasim, M.. An Experimental Study on Enhancing Progressive Collapse Resistance Using Steel Fiber-Reinforced Concrete Frame. Journal of Structural Engineering. 2022;148(7): 04022087.
- [54] Alwesabi EA, Abu Bakar BH, Alshaikh IMH, Akil HM. Impact resistance of plain and rubberized concrete containing steel and polypropylene hybrid fiber. Mater Today Commun. 2020;25: 101640. doi: 10.1016/J.MT COMM.2020.101640
- [55] Xiao J, Falkner H. On residual strength of high-performance concrete with and without polypropylene fibres at elevated temperatures. Fire Saf J. 2006;41: 115–121. doi: 10.1016/J.FIRESAF.2005.11.004
- [56] Alwesabi EAH, Bakar BHA, Alshaikh IMH, Akil HM. Experimental investigation on mechanical properties of plain and rubberised concretes with steel–polypropylene hybrid fibre. Constr Build Mater. 2020;233: 117194. doi: 10.1016/J.CONBUILDMAT.2019.117194
- [57] Abadel A, Abbas H, Almusallam T, Al-Salloum Y, Siddiqui N. Mechanical properties of hybrid fibre-reinforced concrete – analytical modelling and experimental behaviour. Mag Concr Res. 2016;68: 823–843. doi: 10.1680/JMACR.15.00276
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ca5f3030-8693-4820-8345-af54abee3586