Czasopismo
2023
|
Vol. 43, Fasc. 2
|
165 --184
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Let Mn = max(X1, . . . , Xn) denote the partial maximum of an independent and identically distributed skew-normal random sequence. In this paper, the rate of uniform convergence of skew-normal extremes is derived. It is shown that with optimal normalizing constants the convergence rate of [formula] to its ultimate extreme value distribution is proportional to [formula].
Czasopismo
Rocznik
Tom
Strony
165 --184
Opis fizyczny
Twórcy
autor
- School of Mathematics and Statistics, Southwest University, 400715 Chongqing, P.R. China, qx@swu.edu.cn
autor
- School of Mathematics and Statistics, Southwest University, 400715 Chongqing, P.R. China, pzx@swu.edu.cn
autor
- Department of Mathematics, University of Manchester, Manchester M13 9PL, UK, mbbsssn2@manchester.ac.uk
Bibliografia
- A. A. Azzalini (1985), A class of distributions which includes the normal ones, Scand. J. Statistics 12, 171-178.
- B. B. Carmichael and A. Co¨en (2013), Asset pricing with skewed-normal return, Finance Res. Lett. 10, 50-57.
- 1. S. Chang and M. G. Genton (2007), Extreme value distributions for the skew-symmetric family of distributions, Comm. Statist. Theory Methods 36, 1705-1717.
- 2. N. Counsell, M. Cortina-Borja, A. Lehtonen and A. Stein (2011), Modelling psychiatric measures using skew-normal distributions, Eur. Psychiatry 26, 112-114.
- 3. A. Gasull, M. Jolis and F. Utzet (2015a), On the norming constants for normal maxima, J. Math. Anal. Appl. 422, 376-396.
- 4. A. Gasull, J. A. L´opez-Salcedoand and F. Utzet (2015b), Maxima of gamma random variables and other Weibull-like distributions and the Lambert W function, Test 24, 714-733.
- 5. M. G. Genton (2004), Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality, Chapman and Hall/CRC, Boca Raton.
- 6. P. Hall (1979), On the rate of convergence of normal extremes, J. Appl. Probab. 16, 433-439.
- 7. F. Hosseini, J. Eidsvik and M. Mohammadzadeh (2011), Approximate Bayesian inference in spatial glmm with skew normal latent variables, Comput. Statist. Data Anal. 55, 1791-1806.
- 8. H. Kim M. and B. K. Mallick (2004), A Bayesian prediction using the skew Gaussian distribution, J. Statist. Planning Inference 120, 85-101.
- 9. M. R. Leadbetter, G. Lindgren and H. Rootz´en (1983), Extremes and Related Properties of Random Sequences and Processes, Springer, New York.
- 10. X. Liao and Z. Peng (2012), Convergence rates of limit distribution of maxima of lognormal samples, J. Math. Anal. Appl. 395, 643-653.
- 11. X. Liao, Z. Peng and S. Nadarajah (2013a), Asymptotic expansions for moments of skew-normal extremes, Statist. Probab. Lett. 83, 1321-1329.
- 12. X. Liao, Z. Peng and S. Nadarajah (2013b), Tail properties and asymptotic expansions for the maximum of logarithmic skew-normal distribution, J. Appl. Probab. 50, 900-907.
- 13. X. Liao, Z. Peng and S. Nadarajah (2014a), Tail behavior and limit distribution of maximum of logarithmic general error distribution, Comm. Statist. Theory Methods 43, 5276-5289.
- 14. X. Liao, Z. Peng, S. Nadarajah and X. Wang (2014b), Rates of convergence of extremes from skew normal samples, Statist. Probab. Lett. 84, 40-47.
- 15. K. A. Nair (1981), Asymptotic distribution and moments of normal extremes, Ann. Probab. 9, 150-153.
- 16. Z. Peng, S. Nadarajah and F. Lin (2010), Convergence rate of extremes for the general error distribution, J. Appl. Probab. 47, 668-679.
- 17. R. Vasudeva, K. J. Vasantha and S. Ravi (2014), On the asymptotic behaviour of extremes and near maxima of random observations from the general error distributions, J. Appl. Probab. 51, 528-541.
- 18. Q. Xiong and Z. Peng (2020), Asymptotic expansions of powered skew-normal extremes, Statist. Probab. Lett. 158, art. 108667, 10 pp.
- 19. C. Zeller, C. Cabral and V. Lachos (2016), Robust mixture regression modeling based on scale mixtures of skew-normal distributions, Test 25, 375-396.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ca2af697-e794-494b-9501-ef6293fef90b