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IDENTIFYING INFLUENTIAL NODES

IN THE GENOME-SCALE METABOLIC

NETWORKS

Abstract. The present article introduces two novel centrality indices
which can be used in order to characterize the genome-scale metabolic net-
works. The deliberate attack simulation experiments conducted on two
Barabási-Albert models and four genome-scale metabolic networks demon-
strate that the proposed ranking methods are effective in identifying essen-
tial nodes in complex networks. Also, the Principal Component Analysis
reveals that the Kendall centrality correlation profile can be used to describe
the metabolic networks and distinguish them from their random counter-
parts with the preserved degree distribution.

1. Introduction

Complex systems are composed of connected elements whose interactions are,

in substance, nonlinear. Instances of complex systems encompass our society,

the internet, our brain and cellular interactions. The modelling of complex sys-

tems has attracted attention of many scholars from several different branches, e.g.,

mathematics, physics, biology, computer science just to mention a few. The rep-

resentation of complex interacting systems as complex networks is commonplace

in modern science and engineering. In this setting, nodes of a complex network
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correspond to constituents of a complex system and edges of a network are formal

representatives of interactions within a complex system [10, 27]. While such an

approach in terms of vertices and edges is almost universal, the systems so de-

scribed are highly diverse and composite. This fact stemmed from the phenomena

that vertices and edges in real-world complex networks are tailored to perform

different and inequivalent functions. Therefore, many formal metrics were devel-

oped in order to quantitatively assess the heterogeneity and intricacy of empirical

networks. For instance, the so-called network centrality measures try to quantify

the relative importance of nodes (or edges) within a complex network [10, 25, 27].

Consequently, a centrality is a key property of complex networks that has effect on

the behavior of dynamic processes occurring on a network, like synchronization or

epidemic spreading and can provide essential information about the organization

and functions of these structures.

Note that the accumulation of the results in network theory is parallel to the

expansion of new technologies and the growth of computer literacy in different

branches of science. For instance, it can be observed that current innovations in

advanced molecular techniques have incited the development of databases that

systematically store knowledge of how different biological entities interact. Such

structured data can be naturally represented by complex networks where vertices

correspond to biological objects (e.g., genes, proteins, transcription factors and

metabolites) and edges correspond to interactions between them. Roughly speak-

ing, the molecular networks can be categorized into four main groups, i.e., the

protein-protein interaction networks (denoted by PPI), the regulatory networks,

the signal transduction networks and the metabolic networks [10]. These four cate-

gories share important structural properties with other real-world networks in dif-

ferent fields ranging from the internet to social systems. It was also demonstrated

that topological analyses carried out on molecular networks can be regarded as

a valuable guide to understand and identify factors that play a major role in

the underlying biological processes. For instance, PPI networks possess a small

number of highly connected protein vertices (known as hubs) and many poorly

connected nodes (see [49] and the references cited therein). The empirical as well

as computational studies demonstrated that the deletion of a hub protein is more

likely to be lethal than the deletion of a non-hub protein. This regularity is re-

ferred to as the centrality-lethality rule [20]. In general terms, the above-mentioned

principle indicates that there exists a high correlation between the essentiality of

a protein and its topological centrality in a PPI network. Accordingly, in cur-

rent proteomics, network centrality measures have been an important method for

identifying essential proteins (see [36, 49] and the references cited therein).
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Metabolic networks are the best-studied molecular networks. These complex

systems are composed of metabolites and biochemical reactions converting these

metabolites into each other. In a metabolic network, vertices correspond to

metabolites and edges correspond to biochemical reactions between them [19].

In contrast to other molecular networks such as signal transduction networks

or regulatory networks, complete topologies of metabolic networks can be easily

gained from annotated genomes. Namely, an exponentially increasing number of

organisms possess sequenced genomes with many determined encoded proteins.

Supposing that the annotated enzymes are expressed, it is possible to recon-

struct the metabolic network of the organism. Thus, the so-called genome-scale

metabolic networks are identified with manually curated models that reflect our

comprehension of the metabolic processes occurring in a living organism [28].

These networks can be regarded as an indispensable tool to obtain biological

knowledge from metabolomic data. The metabolic networks which have been

reconstructed from genome information enable in-depth mechanistic interpreta-

tions through metabolic flux simulations and network analysis. For instance, by

graph-theoretical analyses of the topology of genome-scale metabolic networks, it

is possible to conjecture about the functionality of metabolism.

In [19], H. Jeong and coworkers noted that the connectivity of metabolic net-

works follows approximately a power law, i.e., the frequency, denoted by P (k),

of metabolites participating in k biochemical reactions is given by the expression

P (k) ∼ ak−γ , where a is a constant and γ is a positive exponent. The above fact

is tantamount to the situation in which most metabolites are involved in only few

reactions and some metabolites (known as hub metabolites) are involved in many

reactions. These hub metabolites are more frequent then would be expected, for

instance, in random networks. This scale-free property of metabolic networks is re-

sponsible for their robustness in the sense that these networks often remain intact

when a large portion of randomly selected vertices is deleted from the network.

However, if a small portion of the hub metabolites of the network is deleted the

network is likely to become disintegrated into several separate clusters [2,7,8,28].

In several papers, metabolites were ranked based on their position within

a metabolic network in order to determine their relative significance (see [19,26,46]

and the references cited therein). In [46], S. Wuchty and P.F. Stadler argued that,

in the case of metabolic networks, the meaning of a centrality measure is obvious.

Namely, according to the above authors, central metabolites are the crossroads of

the network and are historically oldest ones. They maintain that, in metabolic

networks, the notion of a centrality measure simultaneously reflect the impor-

tance as well as the age of a metabolite. Therefore, in metabolic networks, in
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addition to establishing the significance of a metabolite for metabolism, centrality

indices can be very useful in determining the core of metabolism by computa-

tional tools. Thereby, the notion of the metabolic core can be identified with

a central, highly connected part of metabolism which provides main substrates for

many anabolic reactions and is probably evolutionary highly conserved. It should

also be mentioned that, in current metabolomics, the ranking of metabolites in

a metabolic network can be used to identify drug targets for the next generation of

medicines [31]. Consequently, it can be claimed that the development of effective

ranking methods applicable to metabolic networks is of paramount importance

from both theoretical as well as practical perspectives.

Complex networks and centrality measures have been at the forefront of statis-

tical mechanics for more than a decade. This branch of physics uncovered several

basic rules that govern complex networks and can be applied to a wide range of

complex systems, from the internet to social and biological networks. Evaluating

the importance of nodes in complex networks can undoubtedly help to understand

them and to develop the capability to control them.

In this paper, we propose two new ranking methods which can be thought

of as extensions of the measures considered in [45]. To test their effectiveness in

identifying essential nodes in the genome-scale metabolic networks, we follow the

methodology borrowed from statistical mechanics. Namely, the main part of the

present work consists of the targeted attack simulation experiments in which two

newly introduced centrality measures are juxtaposed with the degree centrality

as well as with three representative state-of-the-art centrality indices and the ef-

ficacy of the attack strategies based on these metrics is comparatively evaluated.

Also, the Principal Component Analysis is employed in order to explore the rank

correlations between the above centrality measures defined on the genome-scale

metabolic networks.

The rest of the paper is organized as follows: Section 2 presents the necessary

background on graph theory and recent centrality indices which are used as con-

trast metrics in Section 5. Section 3 proposes two novel ranking methods whereas

Section 4 describes the methodology and datasets used in Section 5. The results

and discussion are contained in Section 5. Finally, Section 6 concludes the paper.
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2. Background

In the present work, it is assumed that all considered complex networks are

modelled by simple graphs of the general form G = (V (G) , E (G)) where V (G) =

{v1, v2, . . . , vn} is the vertex set and |E (G)| = m is the edge set. For two vertices

vi, vj ∈ V (G), vivj means that vi and vj are adjacent, i.e., vivj ∈ E (G). The

neighborhood of the node vi ∈ V (G), denoted by NG (vi), is identified with the

following set: NG (vi) = {w ∈ V (G) | wvi ∈ E (G)}. The symbol ki refers to

the degree of the vertex vi ∈ V (G). Undoubtedly, ki = |NG (vi)|. The degree

centrality corresponding to the node vi ∈ V (G), denoted by DC (vi), is given by

DC (vi) = ki

n−1 or simply by DC (vi) = ki. A complex network with the vertex

set |V (G)| = n can be represented by the adjacency matrix A (G) ∈ {0, 1}n×n

whose entries are given by the term aij = 1 if there is an edge between vi and vj

and aij = 0 otherwise [10, 27]. The shortest path (geodesic, topological) distance

between two vertices vi, vj ∈ V (G), denoted by dij , is identified with the number

of edges in any shortest path connecting them [10,27].

As previously mentioned, the notion of a centrality measure has many inter-

pretations and for most of them it is possible to indicate a lengthy catalogue of

different proposed metrics. Here, we briefly review three recently suggested cen-

trality indices which are used in our intensional attack simulation experiments as

benchmark measures.

In [6], D. Chen et al. proposed the local centrality measure (also known as

the semi-local centrality measure), denoted by SL, which can be perceived as

a compromise between the low-relevant and highly degenerate degree centrality

and other time-consuming indices. This centrality takes into account the nearest

and the next nearest neighbors of a given node. Formally, the local centrality

measure of the vertex vi ∈ V (G) is defined by the subsequent condition

Q (vj) =
∑

vn∈NG(vj)

No (vn) ,

SL (vi) =
∑

vj∈NG(vi)

Q (vj) ,

where No (vn) is the number of the nearest and the next nearest neighbors of

the node vn. Using the SIR model, the above authors demonstrated that the

SL measure can effectively identify important vertices. Namely, D. Chen and

coworkers showed that, in comparison with other widely used centrality measures,

the proposed SL index performs much better than the degree and betweenness
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centralities and almost as good as the closeness centrality while with much lower

computational complexity [6].

In turn, in [11], L. Fei et al. introduced the centrality measure whose definition

is inspired by the inverse square law. Recall that the inverse square law is any

physical law stating that a given physical quantity or intensity is inversely pro-

portional to the square of the distance from the source of that physical quantity.

The above researchers postulate that the mutual attraction between two vertices

in a complex network follows the inverse square law. They defined this mutual

attraction, denoted by F , by the subsequent formula

F (vi, vj) =
ki × kj
d2ij

.

Then, they argued that the sum of the attraction of a vertex to all other nodes

in the network can be understood as a property of the vertex itself. This sum

can be identified with the intensity of the node and can be perceived as its im-

portance. Thus, the intensity of the node vi ∈ V (G) in the complex network

G = (V (G) , E (G)) is given by the following condition

I (vi) =

n
∑

j=1
j 6=i

F (vi, vj) .

Naturally, the intensity of a vertex can be interpreted as its centrality. This

measure is also denoted by I. In their experiments [11], the above authors demon-

strated that the newly proposed index based on the inverse square law can effec-

tively identify influential nodes in complex networks.

In [47], Xu et al. proposed a multiattribute centrality measure based on the

k-shell index and the structural holes. Recall that the k-shell index, denoted by

KS, is based on the notion of the k-shell decomposition of a complex network.

The k-shell decomposition allows us to identify the core and the periphery of the

network. This procedure relies on the subsequent steps [23]:

a) delete all vertices of the degree ki = 1 and also all their links. This step may

reduce the degree of other nodes to 1;

b) delete vertices whose degree has been reduced to 1 and all their edges until

all the remaining vertices have the degree greater than 1. All of the removed

nodes and the edges between them are considered to form the k-shell with

KS = 1;
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c) delete vertices with the degree ki = 2 and all their edges in the remaining

network until all of the remaining vertices have the degree greater than 2.

Thus, the newly deleted nodes and the edges between them are regarded to

form the k-shell with KS = 2;

d) repeat the analogous process for higher values of KS.

Consequently, at the end of the above presented decomposition, each node is

associated with its own KS index which indicates the topological location of this

vertex within the network. Kitsak and coworkers demonstrated that the highly

connected vertices may possess notably different KS indices and may be situated

either in the core or in the periphery of the network [23]. These researchers also

found that the degree of a vertex is not necessarily correlated with its spreading

capability whereas the KS index can be a better predictor of the spreading influ-

ence of that node [23]. Unfortunately, the k-shell decomposition algorithm clas-

sifies many vertices with different degree into the same k-shell and, consequently,

the resulting ranking list has too many ties.

In order to overcome the above indicated limitation of the k-shell index, many

KS-based indices have been proposed. The proposal of Xu and coworkers depends

on the notion of the so-called links diversity assessment index, denoted by V , which

is expressed by the following formula [47]:

V (vi) =

KSmax
∑

KS=1

lKS
i

NKS

× eKS
i ,

where

eKS
i =

KS (vi)

KSmax
.

In this setting, KSmax denotes the maximum value of the KS index, lKS
i represents

the number of edges from the node vi to the other nodes with the k-shell value

equal to KS, NKS refers to the number of nodes with the k-shell value equal to

KS and eKS
i is the normalized KS value of the node vi. Thus, the V index takes

into account the location of nodes as well as their interactions with neighboring

vertices at different layers. The second concept on which the proposal of Hu et

al. depends is the notion of the structural holes. The theory of the structural

holes is developed in the works of R.S. Burt who introduced the so-called network

constraint coefficient, denoted by S, to quantify the structural holes of a complex
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networks [5]. This index can be defined by the following expressions

s (vi, vj) =
(

qij +
∑

m

qimqmj

)2

, i 6= j 6= m,

S (vi) =
∑

vj∈NG(vi)

s (vi, vj)

and

qij =
aij
∑

vj∈NG(vi)

aij
,

where qij refers to the weight proportion of the node vj in all the adjacency of

the node vi, the node m is the common neighbor of vi and vj and the quantity
∑

m

qimqmj depends on the number of common neighbors m of vi and vj . Then, the

new multiattribute centrality measure proposed by Hu and coworkers, denoted by

V KC, is identified with the subsequent formula [47]:

VKC (vi) =
∑

vj∈NG(vi)

V (vj)×
ki
∑

vj∈NG(vi)

kj
×
( 1

S (vi)

)α

,

where α is a tunable parameter whose range lies in the interval [1, 〈k〉], where 〈k〉

is the average degree of the network. In the present work, α is set to one.

In this section, we have shortly presented three modern centrality measures:

the local centrality measure (SL), the centrality measure based on the inverse

square law (I) and the multiattribute centrality measure based on the k-shell

index and the structural holes (V KC). These indices (with the classical degree

centrality) are used as contrast measures in Section 5. Note that the definitions

of these indices encompass the information on the nearest and the next nearest

neighbors of a focal node (the SL measure), on the degree and the topological

distances between nodes (the I measure) and on the KS index, the degree and

the network constraint index of a focal vertex (the VKC measure). Consequently,

it can can be claimed that the above selected centrality metrics are representative

for contemporary network science.
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3. The proposed methods

One of the widely used centrality measure is the closeness centrality. This

classical centrality index quantifies the importance of a vertex in any complex

network G = (V (G) , E (G)) as the inverse of the sum of the distances to other

nodes in G. However, it was noticed that this centrality metric has two main draw-

backs. Namely, the closeness centrality measure is well-defined only for connected

networks and, even if the network is connected, its values are dominated by dis-

tant vertices. In order to surmount these defects, M. Marchiori and V. Latora [30]

and (independently) Y. Rochat [37] (cf. also [17]) introduced the harmonic mean

of the geodesic distances between a given node and all other nodes in a com-

plex network G = (V (G) , E (G)) as a centrality index. The resulting measure –

the so-called (shortest path) harmonic centrality, denoted by HC, is given by the

following expression

HC (vi) =
∑

vj∈V (G)
vj 6=vi

1

dij
.

In [45], the present author generalized the above concept and proposed the natural

harmonic centrality measure, denoted by NHC. For a complex network G =

(V (G) , E (G)), this newly defined index has the form

NHC (vi) =
∑

vj∈V (G)
vj 6=vi

1

dNij
.

In the above expression, the term dNij refers to the natural distance between two

vertices vi, vj ∈ V (G). Recall that, for a complex network G = (V (G) , E (G)),

the notions of the natural distance and the natural distance matrix, denoted by

ND (G), were proposed by M. Randić and coworkers [34]. They observed that

for any complex network G = (V (G) , E (G)), where |V (G)| = n, it is possible

to treat the rows of its adjacency matrix A (G) as points in the n−dimensional

Euclidean space. Then, the natural distance between two vertices vi, vj ∈ V (G)

is given by the following condition [34]:

dNij =
{

n
∑

i=1

(aik − ajk)
2
}

1

2

.

Consequently, the elements of the natural distance matrix, denoted by ndij , are

given by the natural distances between the points corresponding to nodes of G
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in the n−dimensional Euclidean space, i.e., ndij = dNij if vi 6= vj and ndij = 0 if

vi = vj . Note that the natural distance between nodes in a complex network is,

in general, a pseudo-distance as it may be equal to zero for two different vertices

[34]. This will hapen whenever the corresponding adjacency rows are identical.

This is the case for pairs of nonadjacent nodes which possess the same neighbors.

C.D. Godsil and W.L. Kocay named such nodes as psudosimilar [12]. Accordingly,

for the natural distance, the condition that a metric is positive (i.e., generally,

d (x, y) > 0 if x 6= y where d is any metric function) is relaxed to the requirement

that the metric is non-negative (i.e., generally, d (x, y) ≥ 0 if x 6= y). Thus, the

natural distance matrix can possess entries equal to zero in off-diagonal sites [34].

In the present work, we define for the (shortest path) harmonic centrality

measure and the natural harmonic centrality measure their extended versions.

In our opinion, these derivative centralities should be more effective in iden-

tifying influential nodes in complex networks. Namely, for a complex network

G = (V (G) , E (G)), we propose the extended (shortest path) harmonic centrality

measure, denoted by EHC, which is given by the following condition

EHC (vi) =
∑

vj∈NG(vi)

HC (vj) .

Analogously, for a complex network G = (V (G) , E (G)), the extended natural

harmonic centrality measure, denoted by ENHC, is identified with the subsequent

expression

ENHC (vi) =
∑

vj∈NG(vi)

NHC (vj) .

Note that both newly defined centrality indices utilize more information than

their non-extended counterparts. The extended (shortest path) harmonic central-

ity measure as well as the extended natural harmonic centrality measure consider

not only a focal node but also its nearest neighbors. Therefore, it can be hypoth-

esized that the EHC and ENHC measures will be more effective in determining

important vertices in complex networks.

In order to illustrate how the newly defined indices work, consider the small

exemplary network G in Figure 1.
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Fig. 1. The sample network G with five nodes

Its natural distance matrix has the form

ND (G) =





















1 2 3 4 5

1 0 2 1.7321 2 2.2361

2 2 0 1.7321 0 1

3 1.7321 1.7321 0 1.7321 1.4142

4 2 0 1.7321 0 1

5 2.2361 1 1.4142 1 0





















Then, the nodes of G have the following values of the natural harmonic centrality

measure: NHC (v1) = 2.0246, NHC (v2) = NHC (v4) = 2.0774, NHC (v3) =

2.4392 and NHC (v5) = 3.1543. In turn, the nodes of G possess the subsequent

values of the extended natural harmonic centrality measure

ENHC (v1) = NHC (v2) +NHC (v3) +NHC (v4) +NHC (v5) = 9.7483,

ENHC (v2) = ENHC (v4) = NHC (v1) +NHC (v3) = 4.4638,

ENHC (v3) = NHC (v1) +NHC (v2) +NHC (v4) = 6.1794,

ENHC (v5) = NHC (v1) = 2.0246.

Note that the vertices v2 and v4 in the graph G are pseudosimilar. Conse-

quently, nd2,4 = nd4,2 = 0. The values of the extended (shortest path) harmonic

centrality measure are calculated analogously.
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4. The computational methods and datasets

In order to evaluate the resolution (i.e., the granularity) of a ranking method,

the monotonicity (M) and the percentage of uniquely defined metric (PUD) of

a ranking vector R are used. The monotonicity of R is calculated according to the

following formula [15, 16]:

M (R) =

(

1−

∑

ra∈R

nra (nra − 1)

n (n− 1)

)2

,

where n is the size of the ranking vector R and nra is the number of ties with the

same rank ra. Note that M (R) ∈ [0, 1] for any ranking vector R. This metric

quantitatively assesses the fraction of ties in a ranking list. The monotonicity

M (R) is equal to one if the ranking vector R is perfectly monotonic and is equal

to zero if all entries in R have the same rank. In turn, the PUD metric quantifies

the fraction of uniquely classified elements in a ranking vector R. The PUD metric

nears 100% if almost all elements in R have a unique rank and approaches 0% if

almost all elements in R occur in ties with the same rank. Thus, the monotonicity

and the PUD measure allow to evaluate the discrimination ability of rankings

induced by centrality indices. However, it should be emphasized that a ranking

list with no ties is not necessarily accurate.

It is possible to distinguish two kinds of methods which are employed in order

to quantitatively assess the accuracy of a new ranking method. One is based on

transmission dynamics and other is based on the network connectivity and the

theory that the network damage caused by removing a vertex is equivalent to

its importance. Thus, the more significant the node is, the greater influence the

node failure triggers [2, 14, 18]. In the present paper, to evaluate the accuracy of

the newly proposed ranking methods, the later approach is used. Accordingly,

in order to compare the performance of the newly suggested centrality measures

with the degree centrality and other state-of-the-art indices, we will scrutinize the

importance of nodes for the network connectivity. We will carry out the deliber-

ate (i.e., intensional, targeted) attack simulations on the networks and evaluate

the effectiveness of the attack strategies by measuring the connectivity and the

performance of the post-attack networks. Recall that a deliberate attack means

that the network nodes are selectively deleted according to their importance in de-

scending order of some ranking list. The attack scenarios presented in the present

work are based on the newly proposed centrality measures and their alternatives.
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To measure the connectivity and the performance of the post-attack networks,

we will use three performance metrics that can quantify both the topological and

functional characteristics of the networks. Namely, in all post-attack networks,

we will quantify the number of connected components, the relative size of the

giant component as well as the decline rate of the network efficiency. Removing

a node from a network can partition the network into several components which

are disconnected from each other. We will denote by Ck (G) the number of con-

nected components in the network G after deleting the top−k most important

vertices. Thus, in the intensional attack simulations, we will sequentially remove

the nodes from the network according to the importance ranking lists induced by

the centrality measures under study and calculate the values of Ck (G) after each

step of the attack [15, 16, 42]. Undoubtedly, the higher the value of Ck (G) is,

the better the ranking method is. Consequently, this evaluation criterion is based

on the assumption that if the deletion of influential vertices selected by a certain

centrality index leads to a larger fragmentation of the post-attack network, then

the attack strategy based on this centrality will achieve higher Ck (G) values. The

second metric evaluating the connectivity of the post-attack networks is identified

with the relative size of the giant component [1, 2, 14, 15, 18, 42]. In the present

work, it is assumed that the initial networks are connected, thus the initial size of

the giant component is n (cf. Table 1). The relative size of the giant component,

denoted by r (k), after the removal of the top−k significant nodes is expressed by

the following formula

r (k) =
σk

n
,

where σk is the size (i.e., the number of vertices) of the giant component of the

post-attack network. In our simulations, we will sequentially delete the nodes from

the network according to the importance ranking lists induced by the centrality

measures under study and calculate the values of r (k) after each step of the attack.

Undoubtedly, the lower the value of r (k) is, the better the ranking method is.

Accordingly, this evaluation criterion hinges on the assumption that if the removal

of important vertices singled out by a certain centrality measure brings about

a larger decomposition of the post-attack network, then the attack scheme based

on this centrality index will achieve lower r (k) results. The third metric used to

quantify the connectivity of the post-attack networks is the network efficiency (ε)

[11,15,16]. Recall that the efficiency of a complex network reflects its connectivity.

The better the network connectivity is, the higher the network efficiency is [7, 8].

For a complex network G = (V (G) , E (G)), this topological quantity is defined
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by the following condition

ε =
1

n (n− 1)

∑

vi 6=vj∈V (G)

1

dij
.

The decline rate of the network efficiency after k steps of the attack, denoted by

ε (k), is given by the following formula

ε (k) = 1−
εk
ε0

,

where εk is the efficiency of the post-attack network (after k steps of the attack)

and ε0 is the efficiency of the initial network. In our simulations, we will sequen-

tially delete the nodes from the network according to the importance ranking lists

induced by the centrality measures under study and calculate the values of ε (k)

after each step of the attack. Undoubtedly, the higher the values of ε (k) is, the

better the ranking method is. Consequently, this evaluation criterion presupposes

that if the removal of influential nodes indicated by a certain centrality index in-

duces a faster decline in the efficiency of the post-attack network, then the attack

scenario based on this centrality will achieve higher ε (k) results.

In our intensional attack simulation experiments, for a comprehensive com-

parison, the parameters Ck (G), r (k) and ε (k) are summed up from k = 1 to

k corresponding to about 20% of the nodes in each studied network [1]. Thus,

the quantities
k
∑

k=1

Ck (G),
k
∑

k=1

r (k) and
k
∑

k=1

ε (k) represent the accumulation of the

network damages triggered by the attack strategies after k steps.

In summary, the methodological approach taken in the present work hinges

on the assumption that centrality measures which are more efficient in identifying

significant nodes in complex networks give rise to more destructive attack scenar-

ios [18]. In turn, the destructiveness of an attack scenario is quantified by the

cumulative values of Ck (G), r (k) and ε (k).

Generally speaking, the Kendall’s tau (τ) correlation coefficient is used to col-

late the performance of different topology-based measures. This metric evaluates

the ranking consistency of two lists that rank the same set of entities [15, 16].

Suppose that x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are two ranked lists

that contain n elements, respectively. Any pair of ranks (xi, yi) and (xj , yj) is

considered to be concordant if xi > xj and yi > yj or if xi < xj and yi < yj. In

turn, if xi > xj and yi < yj or if xi < xj and yi > yj the pair is considered to

be discordant. In the case of xi = xj and yi = yj (i.e., tied pair), the pair is said

to be neither concordant nor discordant. In this situation, two rank lists x and y
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are considered to be independent. The Kendall’s tau (τ) correlation coefficient is

expressed by the following formula

τ (x, y) =
nc − nd

√

(n0 − n1) (n0 − n2)
,

where n0 = n(n−1)
2 , n1 =

∑

i

ti(ti−1)

2 , n2 =

∑

j

tj(tj−1)

2 and nc, nd refer (respectively)

to the number of concordant pairs and the number of discordant pairs, ti and tj

denote the number of tied values in the i-th and j-th group of ties, respectively.

The Kendall’s tau (τ) correlation coefficient ranges between −1 and 1. In the

present work, we consider the following ranges in order to quantitatively assess

the strength of the relationship between two rankings [15, 16]:

a) no correlation corresponds to: τ = 0,

b) a low positive (negative) correlation corresponds to: τ ∈ (0, 0.5) (τ ∈

(−0.5, 0)),

c) a moderate positive (negative) correlation corresponds to: τ ∈ [0.5, 0.7)

(τ ∈ (−0.7,−0.5]),

d) a high positive (negative) correlation corresponds to: τ ∈ [0.7, 0.9) (τ ∈

(−0.9,−0.7]),

e) a very high positive (negative) correlation corresponds to : τ ∈ [0.9, 1)

(τ ∈ (−1,−0.9]),

f) a perfect positive (negative) correlation corresponds to: τ = 1 (τ = −1).

In our study, we use four genome-scale metabolic networks corresponding to

four species of bacteria. These networks are denoted by ent, sty, sfl and kpn

and correspond to Enterobacter sp. 638, Salmonella enterica subsp. enterica

serovar Typhi CT18, Shigella flexneri 301 (serotype 2a) andKlebsiella pneumoniae

subsp. pneumoniae MGH 78578 (serotype K52), respectively. All networks were

retrieved from KEGG (Kyoto Encyclopedia of Genes and Genomes) database and

are treated as undirected [22]. Their basic statistical properties are presented in

Table 1.

In Table 1, the symbols 〈k〉, kmax, L (λ2), 〈l〉, 〈C〉, C, Ad, Q (w) refer to

the average degree, the maximum degree, the algebraic connectivity, the average

path length, the average clustering coefficient, the global clustering coefficient



24 P. Wilczek

Table 1
The statistical parameters of four genome-

scale metabolic networks

Index ent sty sfl kpn

n 840 857 818 959
m 1299 1306 1251 1466
〈k〉 3.0929 3.0478 3.0587 3.0574
kmax 37 39 35 43
L (λ2) 0.0096 0.0091 0.0096 0.013
〈l〉 7.4691 7.6634 7.623 7.5466
〈C〉 0.2121 0.2124 0.2186 0.1977
C 0.1668 0.1672 0.1717 0.1553
Ad 0.1087 0.1112 0.126 0.0986
Q (w) 0.7176 0.7111 0.7147 0.6952

(i.e., the ratio of triangles and connected triples), the degree assortativity and the

modularity with respect to the walktrap community finding algorithm.

Four degree-preserving random graph models were generated according to the

algorithm proposed by F. Viger and M. Latapy and implemented in [9]. These

random networks are denoted by ent.rand, sty.rand, sfl.rand and kpn.rand and cor-

respond to the empirical networks ent, sty, sfl and kpn, respectively. These mod-

els possess the degree sequences identical with their real-world counterparts. The

above-mentioned algorithm always generates undirected, connected simple net-

works. The procedure relies on first creating an initial (possibly unconnected) sim-

ple undirected network with the prescribed degree sequence. Then some rewiring

is carried out to make the network connected. Finally, a Monte-Carlo algorithm is

employed to randomize the network. The basic statistical properties of the model

networks are listed in Table 2.

Besides the real networks and their random analogues, we also compare the

performance of the proposed indices with other ranking methods on two synthetic

Barabási-Albert models (BA). Each synthetic network has 1000 vertices. These

model networks were generated according to the original procedure [9, 10, 27].

Namely, the algorithm starts from a connected network with m0 nodes and, at

each step, a new vertex is added to the network and connected to m existing nodes

according to the preferential attachment mechanism. In the present paper, we set

the values of m to 2 and 3. Accordingly, we have obtained two Barabási-Albert

networks, denoted by BA (m = 2) and BA (m = 3), respectively [9].
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Table 2
The statistical parameters of four random models with
the preserved degree distribution. The results are ave-

rages based on 100 simulation trials

Index ent.rand sty.rand sfl.rand kpn.rand

L (λ2) 0.0624 0.0639 0.0672 0.0645
〈l〉 5.3279 5.3955 5.3938 5.4111
〈C〉 0.0105 0.0095 0.0096 0.009
C 0.0095 0.0087 0.0088 0.0081
Ad −0.0275 −0.0273 −0.0309 −0.0305
Q (w) 0.5046 0.5119 0.5094 0.5081

All computations included in the present paper were conducted in the R pro-

gramming language [3, 9, 21, 35, 43, 44, 48].

5. The results and discussion

In this Section, we evaluate the extended (shortest path) harmonic centrality

measure and the extended natural harmonic centrality measure with respect to

the resolution, the accuracy in identifying significant nodes in the synthetic as

well as in the real-world networks and their rank correlations with the alternative

centrality measures.

5.1. The resolution of the tested ranking methods

Tables 3 and 4 contain the results concerning the resolution of the proposed

ranking methods in the Barabási-Albert models for m = 2 and m = 3.

The granularity is quantified by the monotonicity metric (Table 3) and the

PUD metric (Table 4). From the scores in Tables 3 and 4, it can be observed

that, in both model networks, the resolution of the HC measure is the lowest. In

turn, the granularity of the NHC, EHC and ENHC measures in both model

networks is considerably higher. In the synthetic networks, these three centrality

measures produce the rankings with the monotonicity scores above 0.999 and with

the PUD scores above 98.5%. The NHC and ENHC measures defined on the

BA (m = 3) network give rise to the perfectly monotonic importance lists.
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Table 3
The resolution of four centrality indices
evaluated on two BA models quantified

by the monotonicity metric

Index BA (m = 2) BA (m = 3)

HC 0.9998 0.9996
NHC > 0.9999 1
EHC > 0.9999 > 0.9999
ENHC > 0.9999 1

Table 4
The resolution of four centrality indices
evaluated on two BA models quantified
by the percentage of uniquely defined

metric

Index BA (m = 2) BA (m = 3)

HC 89.8 82.1
NHC 99 100
EHC 98.5 98.8
ENHC 99.2 100

Tables 5 and 6 include the results concerning the resolution of the newly pro-

posed ranking methods (EHC and ENHC) as well as the rankings produced

by the DC, SL, I and V KC measures defined on four genome-scale metabolic

networks.

The granularity is measured by the monotonicity metric (Table 5) and the PUD

metric (Table 6). From Table 5, it can be seen that, in all empirical networks, the

DC measure produces the rankings with the monotonicity scores below 0.6. In

turn, the EHC, ENHC, SL and I measures give rise to the rankings with the

monotonicity scores above 0.99. The V KC measure produces the rankings with

the monotonicity above 0.98. Thus, the rankings produced by the DC and V KC

measures possess the highest number of ties. With respect to the monotonicity

metric, these two centrality indices perform the worst. From Table 6, it can be

noticed that, in all metabolic networks, the DC measure uniquely identifies below

1% of the nodes. In turn, in all real-world graphs, the best results are obtained

by the I and EHC centralities. These two indices uniquely classify above 86% of
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Table 5
The resolution of six centrality indices evaluated
on four metabolic networks quantified by the

monotonicity metric

Index ent sty sfl kpn

ENHC 0.9988 0.9987 0.9986 0.9989
EHC 0.9994 0.9994 0.9994 0.9995
DC 0.5984 0.5907 0.5983 0.5981
SL 0.9947 0.9946 0.9944 0.9948
I 0.9993 0.9993 0.9993 0.9994
V KC 0.9851 0.9842 0.9838 0.9825

Table 6
The resolution of six centrality indices evaluated on
four metabolic networks quantified by the percent-

age of uniquely defined metric

Index ent sty sfl kpn

ENHC 82.381 81.3302 81.6626 83.4202
EHC 87.7381 86.6978 87.0416 88.634
DC 0.5952 0.4667 0.7335 0.9385
SL 39.1667 37.5729 38.8753 40.4588
I 87.1429 86.3477 86.4303 88.1126
V KC 52.381 50.0583 50.8557 50.8863

the nodes. The ENHC measure uniquely describes from 81.3302% to 83.4202%

of the vertices. Thus, with respect to the PUD metric, the newly suggested

ENHC measure performs slightly worse than the centrality based on the inverse

square law. On the other hand, the SL measure uniquely identifies from 37.5729%

to 40.4588% of the nodes whereas the V KC measure uniquely describes from

50.0583% to 52.381% of the vertices. Thus, the rankings induced by the DC and

SL measures possess the least fraction of the uniquely defined elements. With

respect to the PUD metric, these two centrality indices perform the worst. Note

that with respect to both resolution metrics (i.e., M and PUD), the granularity

achieved by two newly introduced centrality measures in the synthetic networks is

considerably higher than the resolution in the empirical networks. Note also that,

with respect to both resolution metrics, the DC measure performs the worst.
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5.2. The intensional attack simulation experiments in the

Barabási-Albert models

Our next step in assessing the performance of the newly proposed ranking

methods in identifying important nodes is to determine the impact of deleting the

top most significant vertices on the network structure. In our deliberate attack

simulation experiments, the top twenty percent of the nodes are deleted one by one

from the model and empirical networks according to the importance ranking lists

produced by the tested centrality measures. Thus, in each step of the attack, only

one node is removed according to the importance ranking list and the quantities

Ck (G) (i.e., the number of connected components in the post-attack network),

r (k) (i.e., the relative size of the giant component in the post-attack network) and

ε (k) (i.e., the decline rate of the network efficiency in the post-attack networks)

are measured. After k steps of the attack, we scrutinize the relation between the

values of the parameters Ck (G), r (k) and ε (k) and the significance of the nodes

determined by the tested ranking methods.

In our first series of the targeted attack simulation experiments, we juxtapose

two newly proposed ranking methods, i.e., the extended (shortest path) harmonic

centrality measure and the extended natural harmonic centrality measure with

their non-extended counterparts, i.e., the (shortest path) harmonic measure (HC)

and the natural harmonic centrality measure (NHC). These four centrality indices

are evaluated on the Barabási-Albert model networks for m = 2 and m = 3.

Table 7 shows the cumulative values of the parameter Ck (G) for four centralities

defined on the BA (m = 2, 3) networks.

From this table, it can be observed that, in both model networks, the at-

tack strategies based on the extended versions of the harmonic-type centrality

measures are significantly more harmful than the attack scenarios based on the

non-extended versions of the harmonic-type centrality measures. Thus, it can be

asserted that the ENHC and EHC indices remarkably outperform the NHC and

HC measures, respectively. It can also be noted that, among the non-extended

versions of the harmonic-type measures, the HC index overwhelmingly outper-

forms the NHC measure whereas among the extended versions of these metrics,

the ENHC index surpasses the EHC measure. The above regularity is valid

for both model networks. Thus, from the above presented fragmentation results,

it can be deduced that the ranking lists based on the extended harmonic-type

centralities are more accurate in identifying essential nodes than their analogues

based on the non-extended versions of these measures.
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Table 7
The accumulation of the damages in two
model networks (quantified by the num-
ber of connected components in the post-
attack graphs) triggered by the four at-
tack strategies guided by the HC, NHC,
EHC and ENHC indices. The most
aggressive scenarios are marked in bold

Index BA (m = 2) BA (m = 3)
k=200
∑

k=1

Ck (G)
k=200
∑

k=1

Ck (G)

HC 13172 5176
NHC 200 200
EHC 29589 8544
ENHC 31601 9365

After we study the structural damages (quantified by the number of connected

components in the post-attack networks) triggered by the removal of the top most

important vertices, we move on to scrutinize the impact of deleting the most

significant nodes on the relative size of the giant component in the BA (m = 2, 3)

networks. Figure 2 (the upper panel) shows the relationship between the number

of nodes removed from the networks and the relative size of the giant components

(r (k)). Table 8 contains the cumulative values of the parameter r (k) for k from

1 to 200.

Recall that the lower the value r (k) is, the more destructive the attack strategy

is and (consequently) the more important the removed node is. From these data,

it can be noticed that, in both model networks, the attack scenarios based on the

extended versions of the harmonic-type centrality indices are considerably more

harmful than the attack strategies based on the non-extended versions of these

measures. Hence, it can be concluded that the rankings based on the ENHC and

EHC measures prevail over the rankings based on the NHC and HC measures,

respectively. It can also be observed that, among the non-extended harmonic-

type centralities, the HC measure surpasses the NHC index whereas among the

extended versions of these measures, the ENHC metric surpasses the EHC index.

In this place, it should be emphasized that two model networks differ in their

vulnerability. Namely, the number of necessary vertices which must be removed

in order to destroy the giant component varies from one model to another. In the

case of the BA (m = 2) network, the removal of the 200 most important nodes
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Fig. 2. The relation between the relative size of the giant component and the number of
nodes removed from two model networks (the upper panel) as well as between
the decline rate of the network efficiency and the number of nodes removed from
two model networks (the lower panel)

identified by the ENHC measure brings about high damages to the giant com-

ponent and thus the decrease of its size by 97.5%. In turn, in the case of the

BA (m = 3) network, the deletion of the 200 top nodes indicated by the ENHC

measure triggers the decrease of the size of the giant component by 39.5% (cf.

Figure 2, the upper panel). Thus, with respect to the attack strategies based on

the ENHC measure, the BA (m = 2) model is significantly more vulnerable than

the BA (m = 3) model.

Figure 2 (the lower panel) presents the relationship between the number of

nodes deleted from the networks and the decline rate of the network efficiency.

Table 9 lists the cumulative values of the parameter ε (k) for k from 1 to 200.
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Table 8
The accumulation of the damages in
two model networks (quantified by the
relative size of the giant component in
the post-attack graphs) triggered by the
four attack strategies guided by the HC,
NHC, EHC and ENHC indices. The
most aggressive scenarios are marked in

bold

Index BA (m = 2) BA (m = 3)
k=200
∑

k=1

r (k)
k=200
∑

k=1

r (k)

HC 161.863 174.436
NHC 179.9 179.9
EHC 122.872 169.889
ENHC 116.859 168.484

Table 9
The accumulation of the damages in two
model networks (quantified by the de-
cline rate of the network efficiency in
the post-attack graphs) triggered by the
four attack strategies guided by the HC,
NHC, EHC and ENHC indices. The
most aggressive scenarios are marked in

bold

Index BA (m = 2) BA (m = 3)
k=200
∑

k=1

ε (k)
k=200
∑

k=1

ε (k)

HC 96.529 70.7205
NHC 3.681 1.1535
EHC 135.5605 88.5091
ENHC 138.395 91.1669

Recall that the higher the value ε (k) is, the more deleterious the attack strat-

egy is and (consequently) the more important the removed node is. From these

data, it can be noted that the attack schemes based on the extended harmonic-

type centralities are more destructive than the attack strategies based on the non-
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extended versions of these indices. Thus, the rankings based on the ENHC and

EHC measures are more accurate than the rankings based on the NHC and HC

measures, respectively. In turn, among the non-extended harmonic-type central-

ities, the HC measure overwhelmingly outperforms the NHC measure whereas

among the extended harmonic-type centralities, the ENHC index surpasses the

EHC measure.

In summary, it can be stated that, with respect to all three evaluation parame-

ters (i.e., Ck (G), r (k) and ε (k)), the extended (shortest path) harmonic centrality

measure and the extended natural harmonic centrality measure notably outper-

form their non-extended versions. Consequently, these newly suggested ranking

methods are definitely more efficient in identifying crucial nodes in complex net-

works than their non-extended counterparts.

5.3. The intensional attack simulation experiments in the

genome-scale metabolic networks

In the next series of the intensional attack simulation experiments, we jux-

tapose two newly proposed centrality measures with four benchmark algorithms,

i.e., the degree centrality measure (DC), the local centrality measure (SL), the

centrality measure based on the inverse square law (I) and the centrality measure

based on the k-shell index and the structural holes (V KC). All six centrality

indices are tested on four genome-scale metabolic networks (ent, sty, sfl and kpn).

Table 10 lists the cumulative values of the parameter Ck (G) for six centrality

metrics defined on four biochemical networks for k from 1 to about 20% of the

nodes in each network.

Based on the scores included in Table 10, it can be stated that, in all real-world

networks, the attack schemes based on the ENHC measure are the most harmful.

Thus, with respect to the cumulative values of the parameter Ck (G), the ENHC

index outperforms all other centralities. In addition, it can also be observed that,

in all datasets, the attack scenarios based on the DC measure and the attack

scenarios based on the EHC measure have the second and the third best attack

effects, respectively. The scores from Table 10 indicate that, in all cases, when the

nodes are deleted according to the importance ranking lists produced by the SL

index, the networks have the worst fragmentation effect. Thus, in all metabolic

networks, the SL measure performs the worst.

In summary, it can be concluded that the ENHC measure is the most effective

in identifying essential nodes. Namely, with respect to the cumulative values of
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Table 10
The accumulation of the damages in four metabolic networks (quan-
tified by the number of connected components in the post-attack
graphs) triggered by the six attack strategies guided by the ENHC,
EHC, DC, SL, I and VKC indices. The most aggressive scenarios are

marked in bold

Index ent sty sfl kpn
k=170
∑

k=1

Ck (G)
k=175
∑

k=1

Ck (G)
k=165
∑

k=1

Ck (G)
k=195
∑

k−1

Ck (G)

ENHC 27195 29234 25931 36602

EHC 21528 23170 20154 29092
DC 24359 26173 23285 32596
SL 12981 13659 12448 17460
I 20232 21781 18879 27342
V KC 20726 22080 19540 28177

the parameter Ck (G), the improvement attained by the ENHC measure over the

DC index ranges from 10.2% (the sfl network) to 10.94% (the kpn network).

In our next series of the measurements, we will study the impact of removing

the most vital nodes on the relative size of the giant component in four metabolic

networks. Figure 3 presents the relationship between the number of nodes removed

from the network and the relative size of the giant component. Table 11 lists the

cumulative values of the parameter r (k) for k from 1 to about 20% of the nodes

in each network.

The above data indicate that the attack strategies based on the ENHC mea-

sure are the most destructive. Consequently, in all metabolic networks, the

ENHC index surpasses all other centralities. In turn, the attack schemes based

on the DC measure as well as the attack schemes based on the ENH measure

possess the second and the third best attack effect, respectively. On the other

hand, the SL measure performs the worst. The above regularities are recorded for

all empirical datasets. Based on the above results, it can be asserted that, in all

cases, the importance ranking lists induced by the ENHC measure are the most

accurate in determining influential nodes. Namely, with respect to the cumulative

values of the parameter r (k), the betterment achieved by the ENHC measure

over the DC index is in the range from 7.76% (the sfl network) to 10.36% (the

ent network). Note also that all four networks exhibit the similar vulnerability

with respect to the tested attack scenarios. Namely, the deletion of the (about)
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Fig. 3. The relation between the relative size of the giant component and the number of
nodes removed from four metabolic networks

20% of the most important nodes identified by the ENHC measure from the

networks ent, sty, sfl and kpn triggers the reduction of their sizes by 97.02%,

97.08%, 96.94% and 97.39%, respectively. Therefore, with respect to the vul-

nerability under the attack schemes guided by the ENHC index, the studied

metabolic networks are definitely more similar to the Barabási-Albert model for

m = 2 than for the Barabási-Albert model for m = 3.

Figure 4 shows the relationship between the number of nodes removed from

the networks and the decline rate of the network efficiency. Table 12 contains the

cumulative values of the parameter ε (k) for k from 1 to about 20% of the nodes

in each network.
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Table 11
The accumulation of the damages in four metabolic networks
(quantified by the relative size of the giant component in
the post-attack graphs) triggered by the six attack strategies
guided by the ENHC, EHC, DC, SL, I and VKC indices. The

most aggressive scenarios are marked in bold

Index ent sty sfl kpn
k=170
∑

k=1

r (k)
k=175
∑

k=1

r (k)
k=165
∑

k=1

r (k)
k=195
∑

k−1

r (k)

ENHC 45.2571 43.4936 44.7384 51.0532
EHC 58.4083 55.2532 57.9169 62.2711
DC 50.4881 48.1914 48.5024 55.415
SL 95.1107 93.8833 92.9768 104.8446
I 65.9036 60.8086 65.5562 70.6882
V KC 67.3357 61.231 68.0098 74.1366

Table 12
The accumulation of the damages in four metabolic networks
(quantified by the decline rate of the network efficiency in
the post-attack graphs) triggered by the six attack strategies
guided by the ENHC, EHC, DC, SL, I and VKC indices. The

most aggressive scenarios are marked in bold

Index ent sty sfl kpn
k=170
∑

k=1

ε (k)
k=175
∑

k=1

ε (k)
k=165
∑

k=1

ε (k)
k=195
∑

k−1

ε (k)

ENHC 146.2508 151.5727 141.4684 169.6323
EHC 142.3008 147.9262 137.3179 166.3785
DC 144.7085 150.0847 140.2154 168.4407
SL 121.0272 125.7487 117.212 142.2942
I 139.4788 145.5381 134.2337 163.8296
V KC 140.6356 146.2667 134.8871 164.0976

These data demonstrate that, in all datasets, the attack strategies based on the

ENHC measure are slightly more deleterious than the attack scenarios based on

theDC index. In turn, the attack strategies guided by theDC measure are slightly

more harmful than the attack strategies based on the EHC measure. Thus, in

all metabolic networks, the ENHC index slightly outperforms the DC measure.

On the other hand, the attack strategies guided by the SL measure produce the
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Fig. 4. The relation between the decline rate of the network efficiency and the number
of nodes removed from four metabolic networks

poorest results. The above pattern holds in all biochemical networks. Data from

Table 12 suggest that, with respect to the cumulative values of the parameter

ε (k), the refinement attained by the ENHC measure over the DC index ranges

from 0.7% (the kpn network) to 1.05% (the ent network).

To summarize the results of the deliberate attack simulation experiments con-

ducted on four genome-scale metabolic networks, it can be asserted that the at-

tack strategies based on the newly proposed the ENHC measure are the most

destructive to the network connectivity. Namely, with respect to three evaluation

parameters (i.e., Ck (G), r (k) and ε (k)), the efficacy of the ENHC index outper-

forms other ranking methods. Thus, the ENHC algorithm possesses the highest

identification accuracy. It can also be noted that both newly suggested centrality



Identifying influential nodes in the genome-scale metabolic networks 37

indices (ENHC, EHC) surpass three representative state-of-the-art centrality

measures (SL, I and V KC). Therefore, it can be concluded that the ENHC

and EHC algorithms have the ability to effectively distinguish the most essential

nodes. Accordingly, the rankings induced by these novel measures are effective in

identifying important vertices in the genome-scale metabolic networks and their

introduction seems to be justified.

5.4. The rank correlations between the tested ranking

methods

The linear and rank correlations between different centrality measures have

been studied in many papers ( [13, 29, 38, 39] and the references cited therein). It

was observed that, in model and empirical networks, the various centrality indices

are correlated: influential vertices using one of the measures are frequently also

influential using others. For instance, in many cases, vertices with high values of

the degree centrality possess also high values of the betweenness centrality [13].

Nonetheless, there are vertices with high values for one centrality and low values

for another. In [38], J.R.F. Ronqui and G. Travieso studied the linear correlations

quantified by the Pearson correlation coefficient between several centrality metrics

and introduced the notion of the centrality correlation profile of a given complex

network. Namely, the centrality correlation profile of a complex network is iden-

tified with a specific pattern of correlations between centrality indices. These

authors numerically demonstrated that the centrality correlation profile based on

the Pearson correlation coefficient can be used in order to characterize the net-

works. Namely, this concept allows to distinguish between the empirical networks

and their randomly rewired counterparts as well as between the Barabási-Albert

models and the Erdős-Rényi models. They concluded that the centrality correla-

tion profile is characteristic property of a given complex network.

Note that, in the present study, we are interested in the orders (i.e., the ranked

lists) produced by the centrality measures. Note also that C. Shao and coworkers

empirically demonstrated that the rank correlation coefficients (the Kendall’s τ or

Spearman’s ρ) perform better than the Pearson correlation coefficient in scale-free

networks [39]. Accordingly, bearing in mind that the metabolic networks are scale-

free, we decided to use the Kendall’s τau correlation coefficient to quantitatively

assess the rank correlations between the studied centrality measures.

Table 13 contains the Kendall’s τau correlation coefficients between the non-

extended and extended harmonic-type centrality measures evaluated on two Ba-

rabási-Albert models for m = 2 and m = 3.
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Table 13
The Kendall rank correlation coefficients be-
tween the extended and non-extended harmo-
nic-type centrality indices evaluated on two

model networks

Pair of indices BA (m = 2) BA (m = 3)

HC/EHC 0.5984 0.631
NHC/ENHC −0.9466 −0.9507

From this table, it can be noticed that, in both model networks, the HC mea-

sure is positively moderately correlated with its extended version. In turn, in both

model networks, the NHC measure is very strongly negatively correlated with its

extended counterpart. Consequently, this very high negative correlation can ex-

plain the fact that, in the targeted attack simulation experiments, the ENHC

measure overwhelmingly outperforms the NHC index.

Table 14 lists all pairwise Kendall’s τau correlation coefficients between six

tested centrality measures (i.e., ENHC, EHC, DC, SL, I and V KC) defined on

four metabolic networks.

All rank correlations contained in Table 14 are positive. From this table, it

can be noted that the EHC measure is very highly correlated with the I measure.

This high correlation can be easily elucidated by the fact that both indices are

based on the shortest path distances. On the other hand, the pairs of measures:

ENHC/DC, EHC/DC, EHC/VKC, DC/I, SL/I, SL/VKC and I/V KC are

highly correlated. Therefore, this implies that vertices which are essential with

respect to one definition are, in general, also essential according to other defini-

tions. Two newly proposed indices (ENHC and EHC) are moderately correlated.

In turn, the lowest correlation is observed for the pair ENHC/SL. Hence, the

rankings based on these two methods are divergent. This fact can explain why,

in comparison with the attack strategies based on the ENHC index, the attack

scenarios guided by the SL metric are the least destructive (cf. Tables 10–12 and

Figures 3 and 4). Therefore, we propose to define the Kendall centrality correlation

profile of a complex network as a specific pattern of rank correlations (quantified

by the Kendall’s τau correlation coefficient) between centrality measures. From

Table 14, it can be observed that all genome-scale metabolic networks are very

similar with respect to their Kendall centrality correlation profiles.

In order to check if the Kendall centrality correlation profile of the genome-

scale metabolic networks hinges on their degree distribution, we have generated
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Table 14
The Kendall rank correlation coefficients between all
pairs of six centrality indices (ENHC, EHC, DC, SL,

I, VKC) evaluated on four metabolic networks

Pair of indices ent sty sfl kpn

ENHC/EHC 0.5846 0.5746 0.5842 0.5768
ENHC/DC 0.8478 0.8498 0.8529 0.8441
ENHC/SL 0.2758 0.2609 0.2703 0.2643
ENHC/I 0.5096 0.4955 0.5096 0.4990
ENHC/VKC 0.4853 0.4664 0.4793 0.4758
EHC/DC 0.8124 0.8027 0.8112 0.8092
EHC/SL 0.6695 0.6631 0.6645 0.6657
EHC/I 0.9078 0.9035 0.9083 0.9047
EHC/VKC 0.7900 0.7714 0.7933 0.7903
DC/SL 0.4981 0.4830 0.4921 0.4862
DC/I 0.7284 0.7137 0.7278 0.7207
DC/V KC 0.6755 0.6547 0.6746 0.6721
SL/I 0.7419 0.7382 0.7366 0.7406
SL/VKC 0.7145 0.7061 0.7196 0.7175
I/V KC 0.8205 0.8012 0.8234 0.8204

for each empirical network the ensemble of 100 model networks which preserve the

degree distribution of the original graphs but are less structured. These synthetic

networks were constructed via the random rewiring procedure (cf. Section 4)

and serve as null models in our experiments. In comparison with the original

metabolic networks, the model networks obtained by the degree-preserving proce-

dure are characterized by the significantly higher algebraic connectivity and the

considerably lower values of the average path length, the average clustering coeffi-

cient, the global clustering coefficient, the degree assortativity and the modularity

with respect to the walktrap partition algorithm (cf. Tables 1 and 2). In order

to quantitatively assess the effect of the degree distribution on the Kendall cen-

trality correlation profile in the genome-scale metabolic networks, we measure the

Kendall’s τau correlation coefficients between six tested centrality measures on the

model networks and we calculate the z-score for each pairwise rank correlation.

The z-score is calculated according to the following formula

z =
τoriginal − 〈τmod〉

σ (τmod)
,
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where τoriginal is the Kendall’s τau correlation coefficient between two centrali-

ties measured on the original (i.e., empirical) networks (cf. Table 14), 〈τmod〉 and

σ (τmod) are the average and the standard deviation of the Kendall’s τau correla-

tion coefficients measured on the model networks. Generally, it is assumed that

a result is statistically significant if its corresponding z-score is above |2|. Thus, in

our context, we presuppose that a given rank correlation between two centrality

measures quantified by the Kendall’s τau correlation coefficient is independent on

the degree distribution of the underlying network if its z-score is below −2 or above

2. The Kendall’s τau correlation coefficients between all pairs of centrality indices

measured on the model networks are contained in Table 15. The corresponding

z-scores are listed in Table 16.

Table 15
The Kendall rank correlation coefficients between all pairs of
six centrality indices (ENHC, EHC, DC, SL, I, VKC) evalu-
ated on four rewired random network models. The results are

averages based on 100 simulation trials

Pair of indices ent.rand sty.rand sfl.rand kpn.rand

ENHC/EHC 0.5930 0.5865 0.5947 0.5915
ENHC/DC 0.8583 0.8563 0.8597 0.8562
ENHC/SL 0.2521 0.2424 0.2543 0.2397
ENHC/I 0.5536 0.5459 0.5564 0.5487
ENHC/VKC 0.6364 0.6158 0.6212 0.6208
EHC/DC 0.8646 0.8614 0.8956 0.8634
EHC/SL 0.6296 0.6270 0.6309 0.6198
EHC/I 0.9322 0.9311 0.9346 0.9293
EHC/V KC 0.8104 0.7874 0.7868 0.7992
DC/SL 0.4805 0.4737 0.4831 0.4675
DC/I 0.8168 0.8123 0.8195 0.8116
DC/V KC 0.8055 0.7818 0.7821 0.7903
SL/I 0.6873 0.6855 0.6867 0.6804
SL/VKC 0.5617 0.5617 0.5654 0.5604
I/V KC 0.8019 0.7833 0.7849 0.7934

From these data, it can be seen that, in most cases, the rank correlations

between centralities do not depend on the degree distribution of the underlying

networks. The highest absolute values of the z-scores are recorded for the rank

correlations between the DC measure and two geodesic-based centralities (i.e.,

EHC and I). Therefore, it can be hypothesized that the centralities based on
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Table 16
The z-scores results comparing the rank correlations between six
centrality indices (ENHC, EHC, DC, SL, I, VKC) evaluated on the
empirical metabolic networks (cf. Table 14) and on the random

models with the preserved degree distribution (cf. Table 15)

Pair of indices ent sty sfl kpn

ENHC/EHC −1.5962 −2.1837 −1.7768 −2.4942
ENHC/DC −3.6440 −2.2295 −2.3252 −3.8238
ENHC/SL 1.8120 1.4496 1.1443 1.6934
ENHC/I −5.9597 −7.1971 −6.0147 −6.5763
ENHC/VKC −6.5742 −6.3322 −5.2120 −7.0151
EHC/DC −16.9604 −19.5085 −15.6695 −18.4598
EHC/SL 3.4094 3.1867 2.6145 3.6049
EHC/I −8.6569 −9.7598 −8.7213 −7.8646
EHC/V KC −0.8482 −0.4917 0.1447 −0.3024
DC/SL 1.2284 0.6587 0.5566 1.2109
DC/I −14.1704 −15.9039 −19.1983 −14.4444
DC/V KC −4.8452 −3.9091 −2.7238 −4.2105
SL/I 5.2239 5.0899 4.2433 5.3962
SL/VKC 8.4397 8.5060 6.9750 7.5715
I/V KC 1.0710 0.7152 0.9876 1.1436

the topological distance provide unique information which is independent on the

degree distribution of the underlying complex networks.

In order to further test if the overall Kendall centrality correlation profile of the

metabolic networks depends on their degree sequences, we carry out the Principal

Component Analysis (PCA) in which each network (empirical or model) is identi-

fied with the 15-dimensional feature vector comprising all pairwise Kendall’s τau

correlation coefficients. Figure 5 presents four two-dimensional projections of the

ensembles consisting of 101 networks (i.e., one real-world network and 100 model

networks) from the space defined by the Kendall centrality correlation profile.

In the PCA results, first two principal components explain from 62.9% (the

kpn ensemble) to 66.7% (the ent ensemble) of the variance contained in the exper-

imental data. In all cases, the empirical networks are located outside the region

occupied by their degree-preserving random counterparts. Thus, the PCA out-

comes clearly demonstrate that the overall Kendall centrality correlation profile

can be used to distinguish between the real-world metabolic networks and their

random models having the same degree sequences. Consequently, it can be uttered
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Fig. 5. PCA projections comparing the real-world metabolic networks with their rewired
random versions with the preserved degree distribution (in all subfigures, the
empirical metabolic network is denoted by the letter E and is marked by the
triangle symbol)

that the Kendall centrality correlation profile of the network under study does not

depend on their degree distributions and can be employed to characterize these

graphs.

Accordingly, the above results show that the concept of the centrality corre-

lation profile of a complex network based on the Pearson correlation coefficients

from [38] can be generalized to the rank correlations quantified by the Kendall’s

τau correlation coefficients. Similarly as the original Pearson-based centrality

correlation profile, the Kendall centrality correlation profile can characterize the

empirical networks and effectively discriminate them from their random rewirings

with the preserved degree sequences.



Identifying influential nodes in the genome-scale metabolic networks 43

6. Conclusions

Various centrality indices are commonly used to identify important nodes in

complex networks. The different measures correspond to different definitions of

the importance of nodes and are applicable to different real-world networks. In

the present paper, we have proposed two novel centrality measures – the ex-

tended (shortest path) harmonic centrality measure and the extended natural

harmonic centrality measure. These metrics can be perceived as refinements of

the (non-extended) indices considered in [45]. The numerical results contained in

the present work testify that rankings based on both newly suggested centrality

measures are characterized by high granularity. The intensional attack simula-

tion experiments carried out on two Barabási-Albert models demonstrated that

the newly introduced measures remarkably outperform their non-extended coun-

terparts. In turn, the simulations carried out on four geneome-scale metabolic

networks indicated that, in all cases, the attack strategies based on the extended

(shortest path) harmonic centrality measure and the extended natural harmonic

centrality measure are more destructive than the attack scenarios based on the lo-

cal centrality measure, the centrality measure based on the inverse square law and

the multiattribute centrality measure based on the k-shell index and the structural

holes. Thus, in the case of the metabolic networks, both newly introduced cen-

trality indices outperform three representative state-of-the-art centrality metrics.

Additionally, the deliberate attack simulation experiments demonstrated that, in

the case of the metabolic networks, the attack strategies based on the extended

natural harmonic centrality measure are more deleterious than the attack schemes

based on the degree centrality. Note that the attack strategies based on the de-

gree centrality are regarded as very aggressive and are commonly used in degrading

complex networks [2, 14, 18]. Thus, our results suggest that the extended natu-

ral harmonic centrality measure is more effective in dismantling the metabolic

networks that the degree centrality. Note also that the problem of the network

disintegration is considered in network science when we want to disrupt a network

if it is harmful [40]. Namely, such phenomena as suppressing the spread of dis-

ease, disintegrating the biochemical networks of pathogenic microorganism [4,28],

perturbing cancer networks [32], destabilizing terrorist networks [33], preventing fi-

nancial contagion [24], controlling the rumor diffusion [41], suppressing the spread

of computer viruses are tantamount to the question how to dismantle a given net-

work with a minimal number of node removals. Therefore, it is hoped that the
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extended natural harmonic centrality measure will also be effective in dealing with

such situations.

The last part of the present report generalizes the notion of the centrality cor-

relation profile of a complex network based on the Pearson correlation coefficient

to the case of the rank correlations measured by the Kendall’s τau correlation co-

efficient. The Principal Component Analysis revealed that the redefined centrality

correlation profile can be used to distinguish between the empirical metabolic net-

works and their random models with the preserved degree distribution. Therefore,

the Kendall centrality correlation profile can be perceived as a new conceptual

framework to characterize complex networks.

In summary, it should be stressed that a centrality measure which is optimal

for one complex network is sometimes suboptimal for a different complex network

and it is impossible to develop a universal centrality index that best assesses the

importance of nodes in every situation. Accordingly, designing efficient algorithms

to rank nodes in complex networks with respect to their significance is a long-term

challenge.
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