Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | Vol. 32, Fasc. 1 | 93--116
Tytuł artykułu

Asymptotic behaviour of linear rank statistics for the two-sample problem

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Applying the strong approximation technique we present a unified approach to asymptotic results for multivariate linear rank statistics for the two-sample problem. We reprove asymptotic normality of these statistics under the null hypothesis and under local alternatives convergent at a moderate rate to the null hypothesis. We also provide a moderate deviation theorem for these statistics under the null hypothesis. Proofs are short and use natural argumentation.
Wydawca

Rocznik
Strony
93--116
Opis fizyczny
Bibliogr. 17 poz., wykr.
Twórcy
autor
  • Institute of Mathematics and Computer Science, Wrocław, University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, Tadeusz.Inglot@pwr.wroc.pl
Bibliografia
  • [1] H. Chernoff and I. R. Savage, Asymptotic normality and efficiency of certain nonparametric test statistics, Ann. Math. Statist. 32 (1958), pp. 972-994.
  • [2] M. Csörgő and P. Révész, Strong Approximations in Probability and Statistics, Academic Press, New York 1981.
  • [3] G. R. Ducharme and T. Ledwina, Efficient and adaptive nonparametric test for the two-sample problem, Ann. Statist. 31 (2003), pp. 2036-2058.
  • [4] Z. Govindarajulu, Nonparametric Inference, World Scientific, Singapore 2007.
  • [5] Z. Govindarajulu, L. Le Cam and M. Raghavachari, Generalizations of theorems of Chernoff and Savage on the asymptotic normality of test statistics, Proc. Fifth Berkeley Symp. Math. Statist. Probab., University of California Press at Berkeley and Los Angeles, 1 (1967), pp. 609-638.
  • [6] G. G. Gregory, An efficiency and optimality of quadratic tests, Ann. Statist. 8 (1980), pp. 116-131.
  • [7] J. Hájek, Some extensions of Wald-Wolfowitz-Noether Theorem, Ann. Math. Statist. 32 (1961), pp. 506-523.
  • [8] J. Hájek, Asymptotic normality of simple linear rank statistics under alternatives, Ann. Math. Statist. 39 (1968), pp. 325-346.
  • [9] J. Hájek and Z. Šidák, Theory of Rank Tests, Academia, Prague 1967.
  • [10] J. Hájek, Z. Šidák and P. K. Sen, Theory of Rank Tests, Academic Press, New York 1999.
  • [11] M. Hušková, The rate of convergence of simple linear rank statistics under hypothesis and alternatives, Ann. Statist. 5 (1977), pp. 658-670.
  • [12] T. Inglot, A. Janic and J. Józefczyk, Data driven tests for univariate symmetry, Technical Report No. I-18/2011/P-009, Institute of Mathematics and Informatics, Wrocław University of Technology, 2011.
  • [13] W. C. M. Kallenberg, Cramér type large deviations for simple linear rank statistics, Probab. Theory Related Fields 60 (1982), pp. 403-409.
  • [14] J. Komlós, P. Major and G. Tusnády, An approximation of partial sums of independent rv’s and the sample df. I, Probab. Theory Related Fields (Z. Wahrsch. Verw. Gebiete) 32 (1975), pp. 111-131.
  • [15] R. Pyke and G. R. Shorack, Weak convergence of a two-sample empirical process and a new approach to Chernoff-Savage Theorem, Ann. Math. Statist. 39 (1968), pp. 755-771.
  • [16] G. R. Shorack and J. A. Wellner, Empirical Processes with Applications to Statistics, Wiley, New York 1986.
  • [17] A. Wald and J. Wolfowitz, On a test whether two samples are from the same population, Ann. Math. Statist. 11 (1940), pp. 147-162.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c9f6df95-8497-486d-b1b5-e0399b74ae5d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.