Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 18, nr 2(56) | 77--91
Tytuł artykułu

Initiation and tolerance of macro-damage of first ply (FBF) in a process of damaging of hybrid multi-ply structures due to reinforcement architecture

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this paper was study and analysis of damaging process of multi-ply structure applied in dentistry. The aim was to analyze and experimentally evaluate tolerance of macro-damage of first ply (FPF - first ply failure) of multi-ply composite. A studied structure of composite makes a carrying structure for dental applications e.g. adhesive bridges. Influence of reinforcement structure on the residual carrying capacity of the studied multi-ply materials has been demonstrated. It has been shown that the type of fiber and fiber ribbon architecture play a major role in strength of studied reinforcements. Structures included in the study differ by the moment of macro-damage occurrence, carrying capacity and residual stiffness.
Wydawca

Rocznik
Strony
77--91
Opis fizyczny
Bibliogr. 38 poz., rys., wykr., tab.
Twórcy
autor
  • University of Economics and Innovation in Lublin, Faculty of Transport and Computer Science, Mechanical Engineering Section, 20-209 Lublin, Projektowa 4 Street, Poland, danielp60@o2.pl
Bibliografia
  • 1. Giurgiutiu V.: Fundamentals of Aerospace Composite Materials. [In] Structural Health Monitoring of Aerospace Composites. Elsevier 2015.
  • 2. Kuna-Ciskał H., Skrzypek J., CDM based modelling of damage and fracture mechanisms in concrete under tension and compression. Engineering Fracture Mechanics, 71(4-6) (2004).
  • 3. Shan M., Zhao L., Hong H., Liu F., Zhang J.: A progressive fatigue damage model for composite structures in hygrothermal environments. International Journal of Fatigue, 111 (2018).
  • 4. Ochelski S., Gotowicki P., Doświadczalna ocena zdolności pochłaniania energii kompozytów węglowo-epoksydowych i szklano-epoksydowch. Biuletyn WAT, 56(1) ( 2007) in Polish.
  • 5. Karbhari V.M., Strassler H., Effect of fiber architecture on flexural characteristics and fracture of fiber-reinforced dental composites. Dental Materials, 23(8) (2007).
  • 6. Kuhtz M., Horning A., Gude M., Jäger H., A method to control delaminations in composites for adjusted energy dissipation characteristics. Materials & Design, 123 (2017).
  • 7. Erden S., Ho K.: Fiber reinforced composites. [In] Fiber Technology for Fiber-Reinforced Composites [Ed] Özgür Seydibeyoğlu M, Mohanty A.K., Misra M. Woodhead Publishing 2017.
  • 8. Ferracene J.L., Palin W.M. Effects of particulate filler systems on the properties and performance of dental polymer composites [In] Non-Metallic Biomaterials for Tooth Repair and Replacement, [Ed] P. Vallittu, Woodhead Publishing, Cambridge 2013.
  • 9. Shalaby W. Shalaby, Ulrich S., Polymers for dental and orthopedic applications. CRC Press, Boca Raton 2007.
  • 10. Lloyd C.H., The fracture toughness of dental composites. Journal of Oral Rehabilitation, 11(4) (1984).
  • 11. Fani M., Farmani S., Bagheri R., Fratcture toughness of resin composite under different modes and media: reviev of articles. Journal of Dental Biomaterials, 2(3) (2015).
  • 12. Hammouda I.M., Hagag E.A., Evaluation the mechanical properties of nanofiled composite resin restorative material. Journal of Biomaterials and Nanobiotechnology, 3(2) (2012).
  • 13. Soderholm K.J. Fracture of dental materials, [In] Applied fracture mechanics, [Ed] Belov A., InTech, 2012.
  • 14. Marandu S.I., Gu G., Bicker R., Experimental and analytical study of surface fatigue life in dental composites. Journal of Composite Materials, 50(16) (2016).
  • 15. Farooq M., Banthia N.: An innovative FRP fibre for concrete reinforcement: Production of fibre, micromechanics, and durability, 172 (2018).
  • 16. Ng S.C., Ismail N., Ali A., Sahari B., Yousof J.M., Experimental investigation on effective detection of delamination in GFRP composites using Taguchi method. Advances in Materials Science, 12(3) (2012).
  • 17. Surowska B., Bieniaś J.: Wytwarzanie wielowarstwowych struktur kompozytowych metodą autoklawową. Kompozyty (Composites), 10(2), (2010), in Polish
  • 18. Imielińska K., Wojtyra R.: Wpływ absorpcji wody na właściwości laminatów winyloestrowych wzmocnionych włóknem aramidowym i szklanym. Kompozyty (Composites), 3(7) (2003), in Polish.
  • 19. Lung C.Y., Sarfraz Z., Habib A., Khan A.S., Matinlinna J.P.: Effect of silanization of hydroxyapatite fillers on physical and mechanical properties of a bis-GMA based resin composite. Journal of the Mechanical Behavior of Biomedical Materials, 54 (2016).
  • 20. Braga R.R., Pfeifer C.S., Sakaguchi R.L., Testing of Dental Materials and Biomechanics. [In] Craig's Restorative Dental Materials, 13th Edition, [Ed] Sakaguchi R.L., Powers J.M, Elsevier Mosby 2012.
  • 21. Gołaski L., Failure criteria for laminates under combined loading conditions, [In] Joint Seminary on Failure of Advanced Materials, [Ed] Francois D. and Golaski L., Paris – Kielce, 1996
  • 22. Kielce University of Technology, 1996, s. 37 ÷61.Li W., Swain M.V., Li Q., Ironsid J., Steven G.P.: Fiber reinforced composite dental bridge. Part I: experimental investigation. Biomaterials vol. 25, No. 20, 2004.
  • 23. ISO 4049:2009 Dentistry - Polymer - based restorative materials.
  • 24. Karbhari V.M., Strassler H., Effect of fiber architecture on flexural characteristics and fracture of fiber-reinforced dental composites. Dental Materials, 23(8) (2007).
  • 25. Camanho P.P., Davila C.G.: Mixed-mode decohesion finite elements for the simulation of delamination on composite materials, NASA/TM-2002-0211737, 2002.
  • 26. Walczak A., Pieniak D., Niewczas A., Niewczas A.M. Kordos P., Study of ceramic-polymer composites reliability based on the bending strength test. Journal of KONBiN, 35(3) (2015).
  • 27. Niewczas A.M., Pieniak D., Ogrodnik P., Reliability analysis of strength of dental composites subjected to different photopolymerization procedures. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 14(3) (2012).
  • 28. Leinfelder KF, Bayne SC, Swift Jr EJ., Packable composites: overview and technical considerations. J. Esthet. Dent.,11 (1999) 234–49.
  • 29. Topoliński T.: Analiza teoretyczna i badania kumulacji uszkodzeń zmęczeniowych konstrukcyjnych kompozytów polimerowych. Rozprawy nr 82, Bydgoszcz 1997, in Polish.
  • 30. Hwang W., Han K.S., Fatigue of composite fatigue modulus concept and life prediction. Journal of Composite Materials, 20(3) (1986).
  • 31. Jones D.R.H., Ashby M.F., Engineering Materials: An Introduction to Microstructures, Processing and Design. Butterworth-Heinemann 2005.
  • 32. LLoyd C.H., The fracture toughness of dental composites. Journal of Oral Rehabilitation, 11(4) (1984).
  • 33. Fani M., Farmani S., Bagheri R., Fracture toughness of resin composite under different modes and media: review of articles. Journal of Dental Biomaterials, 2(3) (2015).
  • 34. Hamouda I.M., Hagag E.A., Evaluation the mechanical properties of nanofiled composite resin restortive material. Journal of Biomaterials and Nanobiotechnology, 3(3) (2012).
  • 35. Soderholm K.J., Fracture of dental materials, [In] Applied Fracture Mechanics, [Ed] Belov A. InTech, 2012.
  • 36. Bełzowski A., Stasieńko J., Ziółkowski B., Kamińska A., Niektóre kryteria akceptacji defektów w kompozytach na przykładzie laminatu ciętego strumieniem wody. Kompozyty (Composites), 4(12) (2004), in Polish.
  • 37. Karmaker A., Prasad A., Effect of design parameters on the flexural properties of fiber-reinforced composites. Journal of Materials Science Letter, 19 (2000).
  • 38. Dyzia M., Dolata A.,J., Śleziona J., Preliminary Analysis of Aluminum Matrix Compositions for Composites Reinforcement with Carbon Fibers, Steel Research International, 83(10), 2012.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c9d6b373-06b8-43dd-8b8d-b73fa46e0959
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.