Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | R. 98, nr 3 | 32--35
Tytuł artykułu

A survey of applications of simple and multiple linear regression in wind power generation

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Przegląd zastosowań prostej i wielokrotnej regresji liniowej w energetyce wiatrowej
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of a survey on the application of simple and multiple linear regression in wind power generation research. Relevant publications were searched for, found, reviewed, and summarised. An increasing trend of number of publications on this topic was found. The main categories of publications forecasting of wind output power, forecasting of wind speed, and wind turbine generator temperature monitoring. The paper presents coincise summaries of publications and details the references identified, all of this in one repository.
PL
W artykule przedstawiono wyniki badań ankietowych dotyczących zastosowania prostej i wielokrotnej regresji liniowej w badaniach energetyki wiatrowej. Odpowiednie publikacje zostały wyszukane, znalezione, zrecenzowane i podsumowane. Stwierdzono rosnący trend liczby publikacji na ten temat. Główne kategorie publikacji: prognozowanie mocy wiatru, prognozowanie prędkości wiatru oraz monitorowanie temperatury generatorów turbin wiatrowych. W pracy przedstawiono zwięzłe streszczenia publikacji i wyszczególnienie zidentyfikowanych pozycji literaturowych, a wszystko to w jednym repozytorium.
Wydawca

Rocznik
Strony
32--35
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • University of South Africa, 28 Pioneer Ave, Florida Park, Roodepoort, 1709, South Africa, mbulin@eskom.co.za
  • Eskom Holdings SoC Limited, Power Road Industrial Area, De Aar, 7000, South Africa, mendubw@eskom.co.za
Bibliografia
  • 1. J. Wang, S. Qin, Q. Zhou, and H. Jiang, "Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China." Renewable, 76 (2015), 91-101.
  • 2. M. Cheng, and Y, Zhu, “The state of the art of wind energy conversion systems and technologies: A review." Energy Conversion and Management, 88 (2014), 332-347.
  • 3. World Energy Council, "Variable renewables integration in electricity systems: How to get it right." World Energy Perspectives: Renewables Integration, 2016.
  • 4. A. Giloni, and M. Padberg, "Alternative methods of linear regression." Mathematical and Computer Modelling, 35 (2002), 361-374.
  • 5. M. Łatka and M. Nowak, "Statistical analysis of the amount of the power generated by the wind power plant, according to weather conditions." Przegląd Elektrotechniczny, ISSN 0033- 2097, R. 93 NR 10/2017, (2017) 170-174.
  • 6. K. Schmidheiny, "The multiple linear regression model." Short Guides to Microeconometrics, Universtat Basel, Fall, (2013), 1-15.
  • 7. O. Fedotova, L. Teixeira, and H. Alvelos, "Software effort estimation with multiple linear regression: Review and practical application." Journal of Information Science and Engineering, 29 (2013), 925-945.
  • 8. W. T. Ambrosius, "Methods in molecular biology: topics in biostatistics." Humana Press, Totowa, New Jersey, USA, (2007).
  • 9. P . Piotrowski, D. Baczyński, M. Kopyt, K. Szafranek, P . Helt, and T. Gulczyński, "Analysis of forecasted meteorological data (NWP) for efficient spatial forecasting of wind power generation." Electric Power Systems Research, 175 (2019), 1-9.
  • 10. R. P. Deksnys, and A. Stankevicius, "Methodology and precision research of wind farm power prediction." Elektronika IR Elektrotechnika, 23 (2017), No.1, 49-56.
  • 11. D. Lee, and R. Baldick, “Analysing the variability of wind power output through the power spectral density." 2012 IEEE Power and Energy Society General Meeting, San Diego, USA, (2012), 1-8.
  • 12. Z. Ren, C. Huang and M. Li, "Research on wind power prediction." Preprints of the 3rd IEEE conf. on Energy Internet and Energy System Integration, Changsha, China, (2019), 1504-1507.
  • 13. Y. Liu, Y. Wang, L. Li, S. Han, and D. Infield, "Numerical weather prediction wind correction methods and its impact on computational fluid dynamics based wind power forecasting." Journal of Renewable and Sustainable Energy, 8 (2016), No. 3, 1-14.
  • 14. C.R. Jones, B.J. Orr and J.R. Eiser, "When is enough, enough? Identifying predictors of capacity estimates for onshore wind-power development in a region of the UK." Energy Policy, 39 (2011), No. 8, 4563-4577.
  • 15. T. H. Soukissian, and A. Papadopoulos, "Effects of different wind data sources in offshore wind power assessment." Renewable Energy, 77 (2015), 101-114.
  • 16. A. Fischer, L. Montuelle, M. Mougeot, and D. Picard, "Statistical learning for wind power: a modeling and stability study towardsforecasting." Wind Energy, 20 (2017), No. 12, 2037-2047.
  • 17. M. J. Um, and Y. Kim, "Estimating potential wind energy from sparsely located stations in a mountainous coastal region." Meteorological Applications, 24 (2017), 279–289.
  • 18. A. Arzu, S. S. Kutty, M.R. Ahmed, and M.G.M. Khan, "Wind speed forecasting using regression, time series and neural network models: a case study of Kiribati." 21st Australasian Fluid Mechanics Conference, Adelaide, Australia (2018), 1-4.
  • 19. A. Arzu, M.R. Ahmed, and M.G.M. Khan, “Wind speed forecasting using regression, time series and neural network models: a casestudy of Suva." 22nd Australasian Fluid Mechanics Conference AFMC2020, Brisbane, Australia (2020), 1-4.
  • 20. C.R. Jones, B.J. Orr, and J.R. Eiser. (2011) "When is enough, enough? Identifying predictors of capacity estimates for onshore wind-power development in a region of the UK." Energy Policy, 39 (2011), No. 8, 4563-4577.
  • 21. K. B. Abdusamad, D. W. Gao, and E. Muljadi, "A condition monitoring system for wind turbine generator temperature by applying multiple linear regression model." 2013 North American Power Symposium (NAPS), Manhattan, KS, USA (2013), 1-8.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c9865c91-4a37-455b-a16b-9b86759342cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.