Warianty tytułu
Języki publikacji
Abstrakty
This paper investigates the collapse diagrams (energy-absorption and efficiency diagrams) under dynamic compression tests (drop tests) with an impact loading speed of 3.09 m/s. Experimental tests were carried out at room temperature on seven different types of closed-cell rigid polyurethane foams with densities of 40, 80, 100, 120, 140, 145 and 300 kg/m3 respectively. Based on the measured load–displacement curves, authors plotted the variation of peak stress, energy-absorption and efficiency attributes with respect to density for each type of foam, highlighting the optimum foam density (100 kg/m3). The influence of density and loading direction (in-plane and out-of-plane) on the main mechanical properties are also discussed. Following the investigations it was observed that both efficiency and energy absorption diagrams shows similar results, leading to the conclusion that both methods are reliable. Considering the test setup, a finite element analysis model was developed that aimed to replicate the experimental procedures. Simulations were performed in the commercial software Abaqus/Explicit using the implemented Elastic/Crushable foam constitutive model and using the static and dynamic test data for calibration. The energy-absorption and efficiency diagrams obtained from simulations were compared with the experimental data.
Czasopismo
Rocznik
Tom
Strony
457--466
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
- Department of Mechanics and Strength of Materials, Politehnica University of Timisoara, 1 Mihai Viteazu Avenue, 300 222 Timisoara, Romania, emanoil.linul@upt.ro
autor
- Department of Mechanics and Strength of Materials, Politehnica University of Timisoara, 1 Mihai Viteazu Avenue, 300 222 Timisoara, Romania, dan.serban@upt.ro
- Research Institute for Renewable Energy, Politehnica University of Timisoara, 300774 Timisoara, Romania
autor
- Department of Mechanics and Strength of Materials, Politehnica University of Timisoara, 1 Mihai Viteazu Avenue, 300 222 Timisoara, Romania, liviu.marsavina@upt.ro
autor
- Department of Solid Mechanics, Lublin University of Technology, Nadbystrzyka 40 str., 20-618 Lublin, Poland, t.sadowski@pollub.pl
Bibliografia
- [1] L.J. Gibson, M.F. Ashby, Cellular Solids. Structure and Properties, 2nd ed., Press Syndicate of the University of Cambridge, 1997.
- [2] B. Bartczak, D. Gierczycka-Zbrozek, Z. Gronostajski, S. Polak, A. Tobota, The use of thin-walled sections for energy absorbing components: a review, Archives of Civil and Mechanical Engineering 10 (4) (2010) 6–19.
- [3] Z. Gronostajski, P. Bandora, P. Karbowski, The effect of crashworthiness parameters on the behaviour of car-body elements, Archives of Civil and Mechanical Engineering 6 (1) (2006) 31–46.
- [4] E. Linul, L. Marsavina, Assessment of sandwich beams with rigid polyurethane foam core using failure-mode maps, Proceedings of the Romanian Academy-Series A 16 (4) (2015) 522–530.
- [5] A. Niknejada, M.M. Abedia, G.H. Liaghatb, M. Zamani Nejada, Absorbed energy by foam-filled quadrangle tubes during the crushing process by considering the interaction effects, Archives of Civil and Mechanical Engineering 15 (2) (2015) 376–391.
- [6] L. Marsavina, J. Kovacik, E. Linul, Experimental validation of micromechanical models for brittle aluminium alloy foam, Theoretical and Applied Fracture Mechanics 83 (2016) 11–18.
- [7] E. Linul, D.A. Şerban, L. Marsavina, J. Kovacik, Low-cycle fatigue behaviour of ductile closed-cell aluminium alloy foams, Fatigue & Fracture of Engineering Materials & Structures (2016), http://dx.doi.org/10.1111/ffe.12535.
- [8] A. Iluk, Global stability of an aluminum foam stand-alone energy absorber, Archives of Civil and Mechanical Engineering 13 (2013) 137–143.
- [9] A. Niknejad, M.M. Abedi, G.H. Liaghat, M. Zamani Nejad, Absorbed energy by foam-filled quadrangle tubes during the crushing process by considering the interaction effects, Archives of Civil and Mechanical Engineering 15 (2015) 376–391.
- [10] D.A. Şerban, E. Linul, T. Voiconi, L. Marsavina, N. Modler, Numerical evaluation of two-dimensional micromechanical Table 3 – Measured cell dimensions of investigated foams. Density [kg/m3] 40 80 100 120 140 145 300 Cell length [mm] 145.8–224.9 123.9–243.5 63.9–126.9 117.5–203.8 333.3–421.0 64.8–107.9 65.3–158.8 Cell wall thickness [mm] 1.05–2.2 1.22–3.15 2.9–5.8 2.13–6.19 4.63–11.87 5.1–13. structures of anisotropic cellular materials: case study for polyurethane rigid foams, Iranian Polymer Journal 24 (2015) 515–529.
- [11] D.A. Şerban, O. Weissenborn, S. Geller, L. Marşavina, M. Gude, Evaluation of the mechanical and morphological properties of long fibre reinforced polyurethane rigid foams, Polymer Testing 49 (2016) 121–127.
- [12] M. Avalle, G. Belingardi, R. Montanini, Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption, International Journal of Impact Engineering 25 (2001) 455–472.
- [13] L. Di Landro, G. Sala, D. Olivieri, Deformation mechanisms and energy absorption of polystyrene foams for protective helmets, Polymer Testing 21 (2) (2002) 217–228.
- [14] A. Deb, N.D. Shivakumar, An experimental study on energy absorption behavior of rigid polyurethane foams, Journal of Reinforced Plastics and Composites 28 (2009) 3021–3026.
- [15] E. Linul, D.A. Serban, T. Voiconi, L. Marsavina, T. Sadowski, Energy-absorption and efficiency diagrams of rigid PUR foams, Key Engineering Materials 601 (2014) 246–249.
- [16] R. Negru, L. Marsavina, T. Voiconi, E. Linul, H. Filipescu, G. Belgiu, Application of TCD for brittle fracture of notched PUR materials, Theoretical and Applied Fracture Mechanics 80 (2015) 87–95.
- [17] L. Marsavina, D.M. Constantinescu, E. Linul, T. Voiconi, D.A. Apostol, Shear and mode II fracture of PUR foams, Engineering Failure Analysis 58 (2015) 465–476.
- [18] L. Marsavina, T. Sadowski, D.M. Constantinescu, Polyurethane foams behaviour. Experiments versus modeling, Key Engineering Materials 399 (2008) 123–130.
- [19] D. Miedzińska, R. Panowicz, Numerical and experimental research on polyisocyanurate foam, Computational Materials Science 64 (2012) 126–129.
- [20] D. Miedzińska, T. Niezgoda, R. Gieleta, Numerical and experimental aluminum foam microstructure testing with use computed tomography, Computational Materials Science 64 (2012) 90–95.
- [21] J. Wlodarczyk, T. Niezgoda, W. Barnat, P. Dziewulski, Validation of numerical models of metallic foams from the aspect of energy absorption, Journal of KONES Powertrain and Transport 14 (2) (2007) 561–570.
- [22] S. Abrate, Criteria for yielding or failure of cellular materials, Journal of Sandwich Structures and Materials 10 (2008) 5–51.
- [23] D. Drucker, W. Prager, Soil mechanics and plastic analysis of limit design, Quarterly of Applied Mathematics 10 (1952) 157–165.
- [24] V. Deshpande, N. Fleck, Multi-axial yield behaviour of polymer foams, Acta Materialia 49 (2001) 1859–1866.
- [25] R. Hill, The Mathematical Theory of Plasticity, Oxford University Press, 1950.
- [26] Abaqus, User's Manual, vol. Analysis, 2014.
- [27] V. Deshpande, N. Fleck, Isotropic constitutive models for metallic foams, Journal of the Mechanics and Physics of Solids 48 (2000) 1253–1283.
- [28] ASTM D1621, Standard Test Method for Compressive Properties of Rigid Cellular Plastics, 2000.
- [29] E. Linul, T. Voiconi, L. Marsavina, T. Sadowski, Study of factors influencing the mechanical properties of polyurethane foams under dynamic compression, Journal of Physics: Conference Series 451 (2013) 012002.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c97d6a63-eece-425a-8af5-2f881f6d4893