Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 45, No. 1 | 66--78
Tytuł artykułu

Instability of spring environmental conditions as a driver of biotic interactions and crustacean structuring in meteorite crater ponds (Morasko, Poland)

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There are 150 meteorite craters worldwide, however, their aggregations are rarely noted. The nature reserve ‘Meteoryt Morasko’ in Poland with fishless meteorite ponds was analyzed as a unique ecosystem for biological analysis of invertebrate interactions. The aim of the study was to recognize the main environmental drivers of cladoceran and copepod community structure from among biotic (competitors and predators) and abiotic factors (i.e. oxygen and pH level) in the spring season. The abundance of small cladocerans (Alonella excisa and Chydorus sphaericus) was the highest at the end of the spring season, i.e. in June, while large species (Daphnia pulex and Simocephalus exspinosus) were most abundant in May. Both size groups of Cladocera were negatively affected by invertebrate predators (Chaoborus crystallinus and carnivorous copepods), which are known to play an important role in structuring cladoceran communities due to the fishless character of the studied ponds. No negative effect of those predators was found for Copepoda, however, nauplii density was reduced by competitors (Aedes communis larvae and ostracods). The temporary character of the examined ponds, oxygen depletion and low pH of water in the shallowest pond resulted in the abundant occurrence of cladoceran males, whose high densities are usually observed in autumn.
Wydawca

Rocznik
Strony
66--78
Opis fizyczny
Bibliogr. 67 poz., rys., tab., wykr.
Twórcy
  • Department of Water Protection, Adam Mickiewicz University in Poznań, Faculty of Biology, ul. Umultowska 89, 61-614 Poznań, Poland, kaspers@amu.edu.pl
  • Laboratory of Wetland Ecology and Monitoring, Faculty of Geography, Adam Mickiewicz University in Poznań, ul. Dzięgielowa 27, 61-680 Poznań, Poland
  • Department of Meteorology, Poznań University of Life Sciences, ul. Piątkowska 94, 60-649 Poznań, Poland
  • Department of Water Protection, Adam Mickiewicz University in Poznań, Faculty of Biology, ul. Umultowska 89, 61-614 Poznań, Poland
Bibliografia
  • [1]. Antilla, S., Ketola, M., Kuoppamäki, K. & Kairesalo, T. (2013). Identification of a biomanipulation-driven regime shift in Lake Vesijärvi: implications for lake management. Freshwater. Biol. 58: 1494-1502. DOI: 10.1111/fwb.12150.
  • [2]. Aygen, C. (2011). Diversity of micro-crustaceans in temporary habitats of the province of Sasali (Izmir, Turkey). Afr. J. Biotechnol. 10(63): 13951-13955. DOI: 10.5897/AJB11.2373.
  • [3]. Basińska, A.M, Antczak, M., Świdnicki, K., Jassey, V.E.J. & Kuczyńska-Kippen, N. (2014). Habitat type as strongest predictor of the body size distribution of Chydorus spahericus (O. F. Müller) in small water bodies. Int. Rev. Hydrobiol. 99: 1-11. DOI: 10.1002/iroh.201301678.
  • [4]. Bengtsson, L. & Malm, J. (1997). Using rainfall-rainoff modeling to interpret lake level data. J. Paleolimnol. 18(3): 235-248. DOI: 10.1023/A:1007982710792.
  • [5]. Bhuiyan, J.R. & Gupta, S. (2007). A comparative hydrobiological study of a few ponds of Barak Valley, Assam and their role as sustainable water resources. J. Environ. Biol. 28(4): 799-802.
  • [6]. Boix, D., Biggs, J., Céréghino, R., Hull, A.P., Kalettka, T. & Oertli, I.B. (2012). Pond research and management in Europe: “Small is Beautiful”. Hydrobiologia 689: 1-9. DOI: 10.1007/s10750- 012-1015-2.
  • [7]. Castilho-Noll, M.S.M. & Arcifa, M.S. (2007). Chaoborus diet in a tropical lake and predation of microcrustaceans in laboratory experiments. Acta. Limnol. Brasil. 19(2): 163-174.
  • [8]. Caceres, C.E. & Tessier, A.J. (2004). To sink or swim: Variable diapause strategies among Daphnia species. Limnol. Oceanogr. 49(4, part 2): 1333-1340. DOI: 10.4319/ lo.2004.49.4_part_2.1333.
  • [9]. Chojnacki, J. & Wegleńska, T. (1984). Periodicity of composition, abundance, and vertical distribution of summer Zooplankton (1977/1978) in Ezcurra Inlet, Admiralty Bay (King George Island, South Shetland). J. Plankton Res. 6(6): 997-1017. DOI: 10.1093/plankt/6.6.997.
  • [10]. Cottingham, K.L. & Schindler, D.E. (2000). Effects of grazer community structure on phytoplankton response to nutrient pulses. Ecology 81: 183-200. DOI: 10.1890/0012-9658(2000)081[0183:E0GCS0]2.0.C0;2.
  • [11]. Cremer, H., Wagner, B., Juschus, O. & Melles, M. (2005). A microscopical study of diatom phytoplankton in deep crater Lake Elgygytgyn, Northeast Siberia. Algological Studies 116(1): 147-169. DOI: 10.1127/1864-1318/2005/0116-0147.
  • [12]. Czerniawski, R. & Domagała, J. (2012). Potamozooplankton communities in three different outlets from mesotrophic lakes located in lake-river system. Oceanol. Hydrobiol. St. 41(1): 46-53. DOI: 10.2478/s13545-012-0006-2.
  • [13]. Czerniawski, R. & Domagała, J. (2013). Reduction of Zooplankton communities in small lake outlets in relation to abiotic and biotic factors. Oceanol. Hydrobiol. St. 42(2): 123-131. DOI: 10.2478/s13545-013-0065-z.
  • [14]. Duquesne, S., Kroeger, I., Kutyniok, M. & Liess, M. (2011). The Potential of Cladocerans as Controphic Competitors of the Mosquito Culex pipiens. J. Med. Entomol. 48(3): 554-560. DOI: 10.1603/ME09282.
  • [15]. Ejsmont-Karabin, J. & Hutorowicz, A. (2011). Spatial distribution of rotifers in monospecies beds of invasive Vallisneria spiralis L. in heated lakes. Ocenol. Hydrobiol. St. 40(4): 71-76. DOI: 10.2478/s13545-011-0043-2.
  • [16]. Ekvall, M.K. & Hansson, L.-A. (2012). Differences in recruitment and life-history strategy alter zooplankton spring dynamics under climate-change conditions. PloS one 7(9): e44614. DOI: 10.1371/journal.pone.0044614.
  • [17]. Eyto, E. & Irvine, K. (2001). The response of three chydorid species to temperature, pH and food. Hydrobiologia 459: 165-172. DOI: 10.1023/A:1012585217667.
  • [18]. Flößner, D. (2000). Die Haplopoda und Cladocera Mitteleuropas. Leiden, Germany: Backhuys Publishers.
  • [19]. Forró, L., Korovchinsky, N.M. & Kotov, A.A. (2008). Global diversity of cladocerans (Cladocera; Crustacea) in freshwater. Hydrobiologia 595: 177-184. DOI: 10.1007/978- 1-4020-8259-7_19.
  • [20]. Fox H.M. (1948). The haemoglobin of Daphnia. P Roy. Soc. Lond. B. Bio. 135(879): 195-212. DOI: 10.1098/rspb.1948.0006.
  • [21]. Frisch, D. & Green, A.J. (2007). Copepods come in first: rapid colonization of new temporary ponds. Fund. Appl. Limnol. 1684(4): 289-297. DOI: 10.1127/1863-9135/2007/0168-0289.
  • [22]. Fryer, G. (1957). The food of some freshwater cyclopoid copepods and its ecological significance. J. Anim. Ecol. 26(2): 263-286. DOI: 10.2307/1747.
  • [23]. Fryer, G. (1968). Evolution and adaptive radiation in the Chydoridae (Crustacea: Cladocera): a study in comparative functional morphology and ecology. Philos. T. Roy. Soc. B. 254(795): 221-385. DOI: 10.1098/rstb.1968.0017.
  • [24]. Gliwicz, Z.M. & Umana, G. (1994). Cladoceran body size and vulnerability to copepod predation. Limnol. Oceanogr. 39(2): 419-424. DOI: 10.4319/lo.1994.39.2.0419.
  • [25]. Green, J. (1956). Variation in the Haemoglobin Content of Daphnia. P R. Soc. Lond. B-Conta. 145(919): 214-232. DOI: 10.1098/rspb.1956.0029.
  • [26]. Havens, K.E. (1991). Summer zooplankton dynamics in the limnetic and littoral zones of a humic acid lake. Hydrobiologia 215(1): 21-29. DOI: 10.1007/BF00005897.
  • [27]. Havens, E. & Beaver, J.R. (2011). Composition, size, and biomass of zooplankton in large productive Florida lakes. Hydrobiologia 668: 49-60. DOI: 10.1007/s10750-010-0386-5.
  • [28]. Hermanowicz, W., Dojlido, J., Dożańska, W., Koziorowski, B. & Zerbe, J. (1999). The physico-chemical analyses of water and wastewater. Warsaw, Poland: Arkady Press.
  • [29]. Hodge, P.W. (2010). Meteorite craters and impact structures of the Earth. Cambridge, United Kingdom: Cambridge University Press.
  • [30]. Iglesias, C., Mazzeo, N., Meerhoff, M., Lacerot, G., Clemente, J.M. et al. (2011). High predation is of key importance for dominance of smallbodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667: 133-147. DOI: 10.1007/ s10750-011-0645-0.
  • [31]. Ikeda, T. (1985). Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature. Mar. Biol. 85: 1-11. DOI: 10.1007/BF00396409.
  • [32]. Jankowski, T. & Straile, D. (2004). Allochronic differentiation among Daphnia species, hybrids and backcrosses: the importance of sexual reproduction for population dynamics and genetic architecture. J. Evolution. Biol. 17(2): 312-321. DOI: 10.1046/j.1420-9101.2003.00666_17_2.x.
  • [33]. Jäger, I.S., Hölker, F., Flöder, S. & Walz, N. (2011). Impact of Chaoborus flavicans^-Predation on the Zooplankton in a Mesotrophic Lake - a Three Year Study. Internat. Rev. Hydrobiol. 96(2): 191-208. DOI: 10.1002/iroh.201011253.
  • [34]. Jeppesen, E., Nöges, P., Davidson, T.A., Haberman, J., Nöges, T. et al. (2011). Zooplankton as indicators in lakes: a scientific- based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676: 279-297. DOI: 10.1007/s10750-011-0831-0.
  • [35]. Joakim, H. (1989). Proposed Swedish spillway design guidelines compared with historical flood marks at Lake Siljan. Nord. Hydrol. 20(4-5): 293-304. DOI: 10.2166/nh.1989.022.
  • [36]. Juraćka, P.J., Laforsch, C. & Petrusek, A. (2011). Neckteeth formation in two species of the Daphnia curvirostris complex (Crustacea: Cladocera). J. Limnol. 70(2): 359-368. DOI: 10.3274/JL11-70-2-20.
  • [37]. Kharitonov, V.G. & Genkal, S.I. (2010). Centric diatom algae (Centrophyceae) of ultraoligotrophic Lake Elgygytgyn and water bodies of its basin (Chukotka, Russia). Inland. Water. Biol. 3(1): 1-10. DOI: 10.1134/S1995082910010013.
  • [38]. Kiørboe, T., Andersen, A., Langlois, V.J. & Jakobsen, H.H. (2010). Unsteady motion: escape jumps in planktonic copepods, their kinematics and energetics. J. R. Soc. Interface. 7(53): 1591-1602. DOI: 10.1098/rsif.2010.0176.
  • [39]. Kroeger, I., Liess, M. & Duquesne, S. (2014). Temporal and spatial habitat preferences and biotic interactions between mosquito larvae and antagonistic crustaceans in the field. J. Vector. Ecol. 39(1): 103-111. DOI: 10.1111/j. 1948- 7134.2014.12076.x.
  • [40]. Kuczyńska-Kippen, N., Basińska, A.M. & Świdnicki, K. (2013). Specificity of zooplankton distribution in meteorite crater ponds (Morasko, Poland). Knowl. Manag. Aquat. Ec. 409: 08. DOI: 10.1051/kmae/2013053.
  • [41]. Kumar, P., Wanganeo, A., Wanganeo, R. & Sonaullah, F. (2010). Seasonal variations in zooplankton diversity of railway pond, Sasaram, Bihar. International Journal of Environmental Sciences 2(2): 1007-1016. DOI: 10.6088/ijes.00202020057.
  • [42]. Lampert, W. & Sommer, U. (2001). Ecology of inland waters (Ekologia wód śródlądowych). Warsaw, Poland: PWN. (In Polish).
  • [43]. Lampert, K., Regmi, B.P., Wathne, I. & Larsson, P. (2014). Clonal diversity and turnover in an overwintering Daphnia pulex population, and the effect of fish predation. Freshwater Biol. 59(8): 1735-1743. DOI: 10.1111/fwb.12378.
  • [44]. Lorenzen, C.J. (1966). A method for the continuous measurement of in vivo chlorophyll concentration. Deep-See Res. 13: 223¬227. DOI: 10.1016/0011-7471(66)91102-8.
  • [45]. Margalef, R. (1957). Information theory in ecology. Gen. Syst. 3:36-71.
  • [46]. Martin, J.W., Olesen, J. & H0eg, J.T. (2014). Atlas of Crustacean Larvae. Baltimore, USA: Johns Hopkins University Press.
  • [47]. Meyabeme Elono, A.L., Liess, M. & Duquesne, S. (2010). Influence of competing and predatory invertebrate taxa on larval populations of mosquitoes in temporary ponds of wetland areas in Germany. J. Vector. Eco. 35(2): 419-426. DOI: 0.1111/j.1948-7134.2010.00101.x.
  • [48]. Mishke, S., Rajabov, I., Mustaeva, N., Zhang, C., Herzschuh, U. et al. (2010). Modern hydrology and late Holocene history of Lake Karakul, eastern Pamirs (Tajikistan): A reconnaissance study. Palaeogeogr. Palaeocl. 289: 10-24. DOI: 10.1016/j. palaeo.2010.02.004.
  • [49]. Nevalainen, L. & Sarmaja-Korjonen, K. (2008). Intensity of autumnal gamogenesis in chydorid (Cladocera, Chydoridae) communities in southern Finland, with a focus on Alonella nana (Baird). Aquat. Ecol. 42(1): 151-163. DOI: 10.1007/ s10452-007-9090-6.
  • [50]. Pastorok, R.A. (1981). Prey vulnerability and size selection by Chaoborus larvae. Ecology 62(5): 1311-1324. DOI: 10.2307/1937295.
  • [51]. Pirow, R., Bäumer, C. & Paul, R.J. (2001). Benefits of haemoglobin in the cladoceran crustacean Daphnia magna. J. Exp. Biol. 204: 3425-3441.
  • [52]. Preissen, H.P. & Young, D.Y. (2005). Daphnia defense strategies in fishless lakes and ponds: one size does not fit all. J. Plankton. Res. 27(6): 531-544. DOI: 10.1093/plankt/fbi029.
  • [53]. Reissen, H.P., O’Brien, W.J. & Loveless, B. (1984). An analysis of the components of Chaoborus predation on zooplankton and the calculation of relative prey vulnerabilities. Ecology 65(2): 514-522.
  • [54]. Rybak, J.I. & Błędzki, L.A. (2010). Freshwater planktonic crustaceans: identification key. (Słodkowodne skorupiaki planktonowe). Warsaw, Poland: Wydawnictwo Uniwersytetu Warszawskiego (In Polish).
  • [55]. Seminara, M., Vagaggini, D. & Margaritora, F.G. (2008). Differential responses of zooplankton assemblages to environmental variation in temporary and permanent ponds. Aquat. Ecol. 42(1): 129-140. DOI: 10.1007/s10452- 007-9088-0.
  • [56]. Shurin, J.B. (2000). Dispersal limitation, invasion resistance, and the structure of pond zooplankton communities. Ecology 81: 3074-3086. DOI: 10.2307/177402.
  • [57]. Simöes, N.R., Lansac-Tôha F.A., Velho L.F.M. & Bonecker C.C. (2012). Intra and inter-annual structure of zooplankton communities in floodplain lakes: a long-term ecological research study. Rev. Biol. Trop. 60(4): 1819-1836. DOI: 10.15517/rbt.v60i4.2183.
  • [58]. Skierska, B. (1971). The identification species key of Polish insects. PartXXVIII Dipterans. Vol. 9a Mosquitos - Culicidae. Larvae and chrysalises (Klucze do oznaczania owadów Polski. Część XXVIII Muchówki - Diptera. Zeszyt 9a Komary - Culicidae. Larwy i poczwarki). Warsaw, Poland: PWN (in Polish).
  • [59]. Sobczyński, T. & Joniak, T. (2009). Vertical changeability of physical-chemical features of bottom sediments in three lakes in aspect type of water mixis and intensity of human impact. Pol. J. Environ. Stud. 18(6): 1093-1099.
  • [60]. Srichandan, S., Panda, C.R & Rout, N.C. (2014). Summer distribution of zooplankton in coastal waters of Odisha, east coast of India. International Journal of Oceanography and Marine Ecological System 3(1): 9-25. DOI:10.3923/ ijomes.2014.9.25.
  • [61]. Stankowski, W.T.J. (2001). The geology and morphology of the natural reserve ‘Meteoryt Morasko’. Planet Space Sci. 49:749¬753. DOI: 10.1016/S0032-0633(01)00011-3.
  • [62]. Steiner, C.F. (2002). Context-dependent effects of Daphnia pulex on pond ecosystem function: observational and experimental evidence. Oecologia. 131: 549-558. DOI: 10.1007/s00442-002-0934-4.
  • [63]. Sywula, T. (1974). Polish freshwater fauna. Vol. 24 Ostracods Ostracoda (Fauna słodkowodna Polski. Zeszyt24. Małżoraczki Ostracoda. Warszawa - Poznań, Poland: PWN (In Polish).
  • [64]. Vandekerkhove, J., Declerck, S., Brendonck, L., Conde-Porcuna, J.M,. Jeppesen, E. et al. (2005), Hatching of cladoceran resting eggs: temperature and photoperiod. Freshwater Biol. 50: 96-104. DOI: 10.1111/j.1365-2427.2004.01312.x.
  • [65]. Vijverberg, J., Dejen, E., Gatahun, A. & Nagelkerke, L.A.J. (2014). Zooplankton, fish communities and the role of planktivory in nine Ethiopian lakes. Hydrobiologia. 722: 45-60. DOI: 10.1007/s10750-013-1674-7.
  • [66]. Wang, H., Chen, H., Xue, L., Liu, N., Liu, Y. (2015). Zooplankton diel vertical migration and influence of upwelling on the biomass in the Chuchki Sea during summer. Acta Oceanol. Sin. 34(5): 68-74. DOI: 10.1007/s13131-015-0668-x.
  • [67]. Ziadi, B., Dhib A., Turki S. & Aleya L. (2015). Factors driving the seasonal distribution of zooplankton in a eutrophicated Mediterranean Lagoon. Mar. Pollut. Bull. 97(1-2): 224-33. DOI: 10.1016/j.marpolbul /2015.06.12.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c97bedfc-c0a9-4e26-9727-7a9ec67239ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.