Warianty tytułu
Języki publikacji
Abstrakty
Laser-induced periodic surface structures (LIPSS) (ripple) with different spatial frequencies have been observed after irradiation of stainless steel surfaces by femtosecond laser pulses in the air. Low spatial frequency LIPSS (LSFL) with the period (about 830 nm) close to the laser wavelength and high spatial frequency LIPSS (HSFL) with half wavelength (about 410 nm) were dependent on the scanning speed of laser focus. The sharp transition from the single LSFL to double HSFL structures occurs at 5 mm/s. This abrupt transition of dividing one ripple into two equals was proved.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
795--803
Opis fizyczny
Bibliogr. 27 poz., rys., tab. wykr.
Bibliografia
- [1] YUFEI MO, YING WANG, JIBIN PU, MINGWU BAI, Precise positioning of lubricant on a surface using the local anodic oxide method, Langmuir 25(1), 2009, pp. 40–42.
- [2] CHEN H., GOU G.Q., TU M.J., LIU Y., Structure and wear behaviour of nanostructured and ultrafine HVOF spraying WC-17Co coatings, Surface Engineering 25(7), 2009, pp. 502–506.
- [3] GUERRA NETO C.L.B., DA SILVA M.A.M., ALVES C., Experimental study of plasma nitriding dental implant surfaces, Surface Engineering 25(6), 2009, pp. 430–433.
- [4] ZHAO B., YADIAN B.L., LI Z.J., LIU P.; ZHANG Y.F., Improvement on wettability between carbon nanotubes and Sn, Surface Engineering 25(1), 2009, pp. 31–35.
- [5] GOLOZAR M.A., MOSTAGHIMI J., COYLE T., Wear behaviour of nanostructured and conventional 8 wt-%Y2O3–ZrO2 coatings against Si3N4 ball, Surface Engineering 22(5), 2006, pp. 399–407.
- [6] SIPE E., YOUNG J.F., PRESTON J.S., VAN DRIEL H.M., Laser-induced periodic surface structure.I. Theory, Physical Review B 27(2), 1983, pp. 1141–1154.
- [7] QUAN SUN, FENG LIANG, VALLÉE R., SEE LEANG CHIN, Nanograting formation on the surface of silica glass by scanning focused femtosecond laser pulses, Optics Letters 33(22), 2008, pp. 2713–2715.
- [8] LI J.M., XU J.T., Self-organized nanostructure by a femtosecond laser on silicon, Laser Physics 19(1), 2009, pp. 121–124.
- [9] BO WU, MING ZHOU, JIAN LI, XIA YE, GANG LI, LAN CAI, Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser, Applied Surface Science 256(1), 2009, pp. 61–66.
- [10] BONSE J., MUNZ M., STURM H., Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses, Journal of Applied Physics 97(1), 2005, article 013538.
- [11] HSU E.M., CRAWFORD T.H.R., MAUNDERS C., BOTTON G.A., HAUGEN H.K., Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation, Applied Physics Letters 92(22), 2008, article 221112.
- [12] DUFFT D., ROSENFELD A., DAS S.K., GRUNWALD R., BONSE J., Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO, Journal of Applied Physics 105(3), 2009, article 034908.
- [13] YANG YANG, JIANJUN YANG, LU XUE, YAN GUO, Surface patterning on periodicity of femtosecond laser-induced ripples, Applied Physics Letters 97(14), 2010, article 141101.
- [14] COLOMBIER J.P., GARRELIE F., FAURE N., REYNAUD S., BOUNHALLI M., AUDOUARD E., STOIAN R., PIGEON F., Effects of electron–phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals, Journal of Applied Physics 111(2), 2012, article 024902.
- [15] COLOMBIER J.P., COMBIS P., ROSENFELD A., HERTEL I.V., AUDOUARD E., STOIAN R., Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: consequences for material removal from Al samples, Physical Review B 74(22), 2006, article 224106.
- [16] RÖMER G.R.B.E., HUIS IN’T VELD A.J., MEIJER J., GROENENDIJK M.N.W., On the formation of laser induced self-organizing nanostructures, CIRP Annals – Manufacturing Technology 58(1), 2009, pp. 201–204.
- [17] VARLAMOVA O., REIF J., VARLAMOV S., BESTEHORN M., The laser polarization as control parameter in the formation of laser-induced periodic surface structures: comparison of numerical and experimental results, Applied Surface Science 257(12), 2011, pp. 5465–5469.
- [18] VARLAMOVA O., REIF J., VARLAMOV S., BESTEHORN M., Modeling of the laser polarization as control parameter in self-organized surface pattern, Journal of Nanoscience and Nanotechnology 11(10), 2011, pp. 9274–9281.
- [19] QIHONG WU, YURONG MA, RONGCHUAN FANG, YUAN LIAO, QINGXUAN YU, XIANGLI CHEN, KELVIN WANG, Femtosecond laser-induced periodic surface structure on diamond film, Applied Physics Letters 82(11), 2003, pp. 1703–1705.
- [20] MIYAJI G., MIYAZAKI K., Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses, Optics Express 16(20), 2008, pp. 16265–16271.
- [21] HONG LIANG, BING SHI, FAIRCHILD A., CALE T., Applications of plasma coatings in artificial joints: an overview, Vacuum 73(3–4), 2004, pp. 317–326.
- [22] MARCHETTO D., ROTA A., CALABRI L., GAZZADI G.C., MENOZZI C., VALERI S., AFM investigation of tribological properties of nano-patterned silicon surface, Wear 265(5–6), 2008, pp. 577–582.
- [23] YUFEI MO, WENJIE ZHAO, DEMING HUANG, FEI ZHAO, MINGWU BAI, Nanotribological properties of precision-controlled regular nanotexture on H-passivated Si surface by current-induced local anodic oxidation, Ultramicroscopy 109(3), 2009, pp. 247–252.
- [24] LITAO QI, NISHII K., NAMBA Y., Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel, Optics Letters 34(12), 2009, pp. 1846–1848.
- [25] WEI ZHANG, GUANGHUA CHENG, QIANG FENG, LAMEI CAO, FENGPING WANG, RONGQING HUI, Abrupt transition from wavelength structure to subwavelength structure in a single-crystal superalloy induced by femtosecond laser, Applied Surface Science 257(9), 2011, pp. 4321–4324.
- [26] SAKABE S., HASHIDA M., TOKITA S., NAMBA S., OKAMURO K., Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse, Physical Review B 79(3), 2009, article 033409.
- [27] BONCH-BRUEVICH A.M., LIBENSON M.N., MAKIN V.S., TRUBAEV V.V., Surface electromagnetic waves in optics, Optical Engineering 31(4), 1992, pp. 718–730.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c94ca08c-6deb-4751-a64a-dd2b470b4bff