Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, no. 3 | art. no. e144, 2023
Tytuł artykułu

Novel drawing technology for high area reduction manufacturing of ultra-thin brass wires

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A significant increase in roughness of dieless-drawn wires due to the strain-induced roughness phenomenon has been documented. For small-diameter wires, even a slight surface relief creates stress concentrations that may contribute to the wire breakage during cold drawing. This, in turn, significantly limits the achievable diameter of the product and the efficiency of drawing process. The present study, however, demonstrates that reducing the wire roughness is possible by combining the dieless and conventional drawing methods. Thus, it is possible to improve the process workability threefold when compared to dieless drawing alone, and the product quality is simultaneously improved. In addition, the surface defects typical to the dieless-drawn wires have been significantly reduced, resulting in an increase in the wire strength. This new combined technology enables a significant reduction in the wire diameter and facilitates an economical large-scale production of ultra-thin wires. In addition, based on the classic drawing and dieless drawing process, a brass wire with a diameter of 0.017 mm has been manufactured. Six times thinner than a human hair, it is believed to be the thinnest long brass wire currently manufactured in the world.
Wydawca

Rocznik
Strony
art. no. e144, 2023
Opis fizyczny
Bibliogr. 35 poz., fot., rys., tab., wykr.
Twórcy
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland, pkustra@agh.edu.pl
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland, mwrobel@agh.edu.pl
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland, dymek@agh.edu.pl
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland, milenin@agh.edu.pl
Bibliografia
  • 1. Enrico A, Dubois V, Niklaus F, Stemme G. Scalable manufac- turing of single nanowire devices using crack-defined shadow mask lithography. ACS Appl Mater Interfaces. 2019;11:8217–26. https://doi.org/10.1021/acsami.8b19410.
  • 2. Zhang H, Tersoff J, Xu S, Chen H, Zhang Q, Zhang K, Yang Y, Lee C-S, Tu K-N, Li J, Lu Y. Approaching the ideal elastic strain limit in silicon nanowires. Sci Adv. 2022;2:e1501382. https://doi. org/10.1126/sciadv.1501382.
  • 3. Yin X, Wu J, Li P, Shi M, Yang H. Self-heating approach to the fast production of uniform metal nanostructures. ChemNanoMat. 2016;2:37–41. https://doi.org/10.1002/cnma.201500123.
  • 4. Rackauskas S, Nasibulin AG, Jiang H, Tian Y, Kleshch VI, Sainio J, Obraztsova ED, Bokova SN, Obraztsov AN, Kauppinen EI. A novel method for metal oxide nanowire synthesis. Nanotechnol- ogy. 2009;20:165603. https://doi.org/10.1088/0957-4484/20/16/ 165603.
  • 5. Guo M, Hernández-Neuta I, Madaboosi N, Nilsson M, van der Wijngaart W. Efficient DNA-assisted synthesis of trans-mem- brane gold nanowires. Microsystems Nanoeng. 2018;4:17084. https://doi.org/10.1038/micronano.2017.84.
  • 6. Luma, (n.d.). https://luma-metall.com/product-range-1.
  • 7. Singh J, Singh R, Kumar R. Review on effects of process param- eters in wire cut EDM and wire electrode development. Int J Innov Res Sci Technol. 2016;2:701–6.
  • 8. Wire EDM for cutting metal 3D prints, Holocreators, Hamburg, Germany, (n.d.). https:// holoc reato rs. com/ blog/ wire- edm- for- cutting-metal-3d-prints/.
  • 9. 120 Mesh ultra thin brass wire mesh plain weave with 0.076 mm-3.522 mm openingitle, (n.d.). http://www.stainlesswovenm esh.com/sale-11834582-120-mesh-ultra-thin-brass-wire-mesh- plain-weave-with-0-076mm-3-522mm-opening.html.
  • 10. Extra fine brass wire, Marubishi Co. Ltd., Osaka, Japan, (n.d.). https://www.mac-wire.com/en/products/brass.
  • 11. Weiss V, Kot RA. Dieless wire drawing with transformation plasticity. Wire J. 1969;9:182–9.
  • 12. Milenin A, Wróbel M, Kustra P. Investigation of the workability and surface roughness of thin brass wires in various dieless drawing technologies. Arch Civ Mech Eng. 2022;22:10. https:// doi.org/10.1007/s43452-021-00331-2.
  • 13. Furushima T, Manabe K. Experimental study on multi-pass die- less drawing process of superplastic Zn–22%Al alloy micro- tubes. J Mater Process Technol. 2007;187–188:236–40. https:// doi.org/10.1016/j.jmatprotec.2006.11.204.
  • 14. Li Y, Quick NR, Kar A. dieless. J Mater Process Technol. 2002;123:451–8. https:// doi. org/ 10. 1016/ S0924- 0136(02) 00110-3.
  • 15. Supriadi S, Furushima T, Manabe K-I. Development of preci- sion profile control system with fuzzy model and correction function for tube dieless drawing. J Solid Mech Mater Eng. 2011;5:1059–70. https://doi.org/10.1299/jmmp.5.1059.
  • 16. Considère A. Mémoire sur l’emploi du fer et de l’acier dans les constructions. Ann Des Ponts Chaussées. 1885;34:574–95.
  • 17. Wróbel M, Pieła K. Basal slip localization in zinc single crys- tals. The considère analyses. Philos Mag. 2010;90:1873–91. https://doi.org/10.1080/14786430903571446.
  • 18. Backofen W. Deformation processing. Addison-Wesley; 1972.
  • 19. Wright RN, Wright EA. Basic analysis of dieless drawing. Wire J Int. 2000;33:138–43.
  • 20. Bylya OI, Khismatullin T, Blackwell P, Vasin RA. The effect of elasto-plastic properties of materials on their formability by flow forming. J Mater Process Technol. 2018;252:34–44. https://doi.org/10.1016/j.jmatprotec.2017.09.007.
  • 21. Fortunier R, Sassoulas H, Montheillet F. A thermo-mechan- ical analysis of stability in dieless wire drawing. Int J Mech Sci. 1997;39:615–27. https://doi.org/10.1016/S0020-7403(96) 00060-4.
  • 22. Furushima T, Manabe K. FE analysis of size effect on deforma- tion and heat transfer behavior in microtube dieless drawing. J Mater Process Technol. 2008;201:123–7. https://doi.org/10. 1016/j.jmatprotec.2007.11.229.
  • 23. Furushima T, Manabe K. Experimental and numerical study on deformation behavior in dieless drawing process of superplastic microtubes. J Mater Process Technol. 2007;191:59–63. https:// doi.org/10.1016/j.jmatprotec.2007.03.084.
  • 24. Milenin A. Rheology-based approach of design the dieless drawing processes. Arch Civ Mech Eng. 2018;18:1309–17. https://doi.org/10.1016/j.acme.2018.04.003.
  • 25. Milenin A, Furushima T, Du P, Pidvysots’kyy V. Improving the workability of materials during the dieless drawing processes by multi-pass incremental deformation. Arch Civ Mech Eng. 2020;20:86. https://doi.org/10.1007/s43452-020-00092-4.
  • 26. Milenin A, Furushima T, Němeček J. Transformation of surface roughness of mg alloy tubes during laser dieless drawing. J Mater Eng Perform. 2020;29:7736–43. https://doi.org/10.1007/ s11665-020-05234-6.
  • 27. Furushima T, Imagawa Y, Manabe KI, Sakai T. Effects of oxida- tion and surface roughening on drawing limit in dieless drawing process of SUS304 stainless steel microtubes. J Mater Process Technol. 2015;223:186–92. https://doi.org/10.1016/j.jmatprotec. 2015.03.033.
  • 28. Sundaram PA. Deformation-induced surface roughening studies in an AISI 1090 spheroidized steel. Scr Metall Mater. 1995;33:1093– 9. https://doi.org/10.1016/0956-716X(95)00322-M.
  • 29. Turner TJ, Miller MP. Modeling the influence of material struc- ture on deformation induced surface roughening in AA7050 thick plate. J Eng Mater Technol. 2006;129:367–79. https://doi.org/10. 1115/1.2744395.
  • 30. Romanova VA, Balokhonov RR, Panin AV, Batukhtina EE, Kazachenok MS, Shakhijanov VS. Micromechanical model of deformation-induced surface roughening in polycrystalline mate- rials. Phys Mesomech. 2017;20:324–33. https://doi.org/10.1134/ S1029959917030080.
  • 31. Li K, Wang Z, Liu X. Study of deformation stability during semi- dieless drawing of Ti-6Al-4V alloy wire. Materials (Basel). 2019. https://doi.org/10.3390/ma12081320.
  • 32. Li K-S. Liu, Xue-Feng, Shi, Zhang-Zhi, Blockage mechanism of metal wire in semi-dieless drawing and stable forming method. Met Res Technol. 2018;115:112. https://doi.org/10.1051/metal/ 2017087.
  • 33. Zilberg YuV, Milenin AA. Study of transformations of sur- face cavities during upsetting. Dopov Nac Akad Nauk Ukr. 1996;1:61–3.
  • 34. Manabe K, Shimizu T, Koyama H, Yang M, Ito K. Validation of FE simulation based on surface roughness model in micro-deep drawing. J Mater Process Technol. 2008;204:89–93. https://doi. org/10.1016/j.jmatprotec.2007.10.081.
  • 35. Stahlmann J, Nicodemus ER, Sharma SC, Groche P. Surface roughness evolution in FEA simulations of bulk metal forming process. Wear. 2012;288:78–87. https://doi.org/10.1016/j.wear. 2012.02.005.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c9437593-b3c3-4118-a8a0-d3002b417fe1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.