Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | R. 97, nr 7 | 52--55
Tytuł artykułu

Pattern reconfigurable planar antenna array based on two circular defected ground structure

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Planarny układ antenowy z możliwością rekonfiguracji oparty na dwóch kołowych strukturach naziemnych z defektami
Języki publikacji
EN
Abstrakty
EN
A pattern-reconfigurable dual-element microstrip antenna array based on reconfigurable two circular defected ground structures was proposed. Five switches are embedded in the two circular defected ground structures to tune the beam orientation. The proposed design able to work at two modes by selecting various combinations of the switch states. The proposed array was fabricated on a Roger board and prepared to shift the beam orientations at the working frequency of 7 GHz. Finally, one prototype of the antenna array was fabricated and tested. The simulated results illustrate that beam steered 52° while the measured beam steered 37°.
PL
Zaproponowano konfigurowalny dwuelementowy zestaw anten mikropaskowych oparty na rekonfigurowalnych dwóch kołowych strukturach naziemnych. Pięć przełączników jest osadzonych w dwóch okrągłych strukturach naziemnych z defektem, aby dostroić orientację wiązki. Proponowany projekt może pracować w dwóch trybach, wybierając różne kombinacje stanów przełącznika. Proponowany układ został wykonany na płycie Roger i przygotowany do zmiany orientacji wiązki przy częstotliwości roboczej 7 GHz. Wyprodukowano i przetestowano jeden prototyp układu antenowego. Symulowane wyniki pokazują, że wiązka kierowana była na 52 °, podczas gdy zmierzona wiązka na 37 °.
Wydawca

Rocznik
Strony
52--55
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
Bibliografia
  • [1] H. W. Deng, T. Xu, and F. Liu, Broadband Pattern- Reconfigurable Filtering Microstrip Antenna with Quasi-Yagi Structure,IEEE Antennas Wirel. Propag. Lett., vol.17, no.7, pp. 1127–1131, 2018.
  • [2] W. Lin, H. Wong, and R. W. Ziolkowski, Wideband Pattern- Reconfigurable Antenna with Switchable Broadside and Conical Beams,IEEE Antennas Wirel. Propag. Lett., vol.16, no. c, pp. 2638–2641, 2017.
  • [3] Khalid Subhi Ahmad, Fauziahanim Che Seman, Shipun Anuar Hamzah, Goh Chin Hock, and Shaharil Mohd Shah, Circuit Model for Microstrip Array Antenna with Defected Ground Structures for Mutual Coupling Reduction and Beamforming Applications, Int. J. of Integrated Eng., vol. 13, no. 1, pp. 101- 119, 2021.
  • [4] I. Lim, and S. Lim, Monopole-Like and Boresight Pattern Reconfigurable Antenna, IEEE Trans. Antennas Propag.,vol. 61, no. 12, pp. 5854–5859, 2013.
  • [5] G. Jin, M. Li, D. Liu, and G. Zeng, A Simple Planar Pattern- Reconfigurable Antenna Based on Arc Dipoles, IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 9, pp. 1664–1668, 2018.
  • [6] A. R. S. I. Ben Mabrouk, M. Al-Hasan, M. Nedil, and T. A. Denidni, A Novel Design of Radiation Pattern- Reconfigurable Antenna System for Millimeter-Wave 5G Applications, IEEE Trans. Antennas Propag., vol. 68, no. 4, pp. 2585-2592, 2019.
  • [7] S. N. M. Zainarry, N. Nguyen-Trong, and C. Fumeaux, A Frequency- and Pattern-Reconfigurable Two-Element Array Antenna, IEEE Antennas Wirel. Propag. Lett., vol.17, no. 4, pp. 617–620, 2018.
  • [8] N. Ramli, M. T. Ali, M. T. Islam, A. L. Yusof, and S. Muhamud- Kayat, Aperture-Coupled Frequency and Patterns Reconfigurable Microstrip Stacked Array Antenna, IEEE Trans. Antennas Propag., vol. 63, no. 3, pp. 1067–1074, 2015.
  • [9] Y. F. Cheng, X. Ding, W. Shao, and B. Z. Wang, Planar Wide- Angle Scanning Phased Array with Pattern-Reconfigurable Windmill-Shaped Loop Elements, IEEE Trans. Antennas Propag., vol. 65, no. 2, pp. 932–936,2017, doi : 10.1109/TAP.2016.2632736.
  • [10] Z. Jiang, S. Xiao, and Y. Li, A Wide-Angle Time-Domain Electronically Scanned Array Based on Energy-Pattern- Reconfigurable Elements, IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 9, pp. 1598–1602, 2018.
  • [11] X. G. Zhang, W. X. Jiang, H. W. Tian, Z. X. Wang, Q. Wang, and T. J. Cui, Pattern-Reconfigurable Planar Array Antenna Characterized by Digital Coding Method, IEEE Trans. Antennas Propag.,vol. 68, no. 2, pp. 1170-1175., 2019.
  • [12] M. A. Aris, M. T. Ali, N. H. Abd Rahman, and I. Pasya, Radiation Pattern Reconfigurable Microstrip Patch Antenna using Dual Delay Line, J. Teknol., vol. 80, no. 1, pp. 9–16, 2018.
  • [13] H. N. Chu, G. Y. Li, and T. G. Ma, Planar Pattern Switchable Antenna using Phase Reconfigurable Synthesized Transmission Lines, IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 12, pp. 2319–2323, 2018.
  • [14] J. Y. Zou, C. H. Wu, and T. G. Ma, Heterogeneous Integrated beam-switching/Retrodirective Array using Synthesized Transmission Lines, IEEE Trans. Microw. Theory Tech., vol. 61, no. 8, pp. 3128–3139, 2013.
  • [15] H. N. Chu, and T. G. Ma, Beamwidth Switchable Planar Microstrip Series-Fed Slot Array using Reconfigurable Synthesized Transmission Lines, IEEE Trans. Antennas Propag., vol. 65, no. 7, pp. 3766–3771, 2017.
  • [16] P. Lotfi, S. Soltani, and R. D. Murch, Broadside Beam- Steerable Planar Parasitic Pixel Patch Antenna, IEEE Trans. Antennas Propag., vol. 64, no. 10, pp. 4519– 4524, 2016.
  • [17] L. Yang, C. Lu, X. Li, L. Liu, and X. Yin, A horizontal Azimuth Pattern-Reconfigurable Antenna using Omnidirectional Microstrip Arrays for WLAN Application, Int. J. Antennas Propag., vol. 2019.
  • [18] Y. Zhang, S. Lin, S. Yu, G. J. Liu, and A. Denisov, Design and Analysis of Optically Controlled Pattern Reconfigurable Planar Yagi-Uda Antenna, IET Microwaves, Antennas Propag., vol. 12, no. 13, pp. 2053–2059, 2018.
  • [19] S. L. Chen, P. Y. Qin, W. Lin, and Y. J. Guo, Pattern- Reconfigurable Antenna with Five Switchable Beams in Elevation Plane, IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 3, pp. 454–457, 2018.
  • [20] J. S. Row, and Y. H. Wu, Pattern Reconfigurable Slotted-Patch Array, IEEE Trans. Antennas Propag., vol. 66, no. 3, pp. 1580– 1583, 2018.
  • [21] H. Li, B. K. Lau, and S. He, Design of Closely Packed Pattern Reconfigurable Antenna Array for MIMO Terminals, IEEE Trans. Antennas Propag., vol. 65, no. 9, pp. 4891–4896, 2017.
  • [22] R. Li, H. Yang, B. Liu, Y. Qin, and Y. Cui, Theory and Realization of a Pattern-Reconfigurable Antenna Based on Two Dipoles, IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 7, pp. 1291–1295, 2018.
  • [23] K. S. Ahmad, F. C. Seman, and S. A. Hamzah, Beam Steering of Array Antenna with 2-orthogonal-I-Shaped Defected Ground Structure, IEEE Asia-Pacific Conference on Applied Electromagnetics, APACE, pp. 296-300, 2016.
  • [24] K. S. Ahmad, F. C. Seman, and S. A. Hamzah, Dual Microstrip Antenna Patches with Orthogonal I-Shaped Defected Ground Structure for Beam Steering Realization, IEEE Asia-Pacific Conference on Applied Electromagnetics, APACE, pp. 174- 178, 2016.
  • [25] M. Ibrahim, A. J. A. Al-gburi, Z. Zakaria, and H. A. Bakar, “Parametric Study of Modified U-shaped Split Ring Resonator Structure Dimension at Ultra-Wide-band Monopole Antenna,” J. Telecommun. Electron. Comput. Eng., vol. 10, no. 2, pp. 53– 57, 2018.
  • [26] A. J. A. Al-Gburi, I. M. Ibrahim, and Z. Zakaria, “Band-notch effect of U-shaped split ring resonator structure at ultra wideband monopole antenna,” Int. J. Appl. Eng. Res., vol. 12, no. 15, pp. 4782–4789, 2017.
  • [27] M. Y. Zeain, M. Abu, A. J. A. Al-gburi, Z. Zakaria, R. Syahputri, and A. Toding, “Design of a wideband strip helical antenna for 5G applications,” Bull. Electr. Eng. Informatics, vol. 9, no. 5, pp. 1958–1963, 2020.
  • [28] A. J. A. Al-gburi, I. M. Ibrahim, M. Y. Zeain, and Z. Zakaria, “Compact Size and High Gain of CPW-fed UWB Strawberry Artistic shaped Printed Monopole Antennas using FSS Single Layer Reflector,” IEEE Access, vol. 8, no. 5, pp. 92697–92707, 2020.
  • [29] A. J. A. Al-gburi et al., “A compact UWB FSS single layer with stopband properties for shielding applications,” Przegląd Elektrotechniczny, no. 2, pp. 167–170, 2021.
  • [30] H. H. Keriee et al., “High gain antenna at 915 mhz for off grid wireless networks,” Bull. Electr. Eng. Informatics, vol. 9, no. 6, pp. 2449–2454, 2020.
  • [31] A. J. Abdullah Al-Gburi, I. M. Ibrahim, Z. Zakaria, and A. D. Khaleel, “Gain Improvement and Bandwidth Extension of Ultra- Wide Band Micro-Strip Patch Antenna Using Electromagnetic Band Gap Slots and Superstrate Techniques,” J. Comput. Theor. Nanosci., vol. 17, no. 2–3, pp. 985–989, 2020.
  • [32] A. J. A. Al-Gburi, I. Ibrahim, and Z. Zakaria, “Gain Enhancement for Whole Ultra-Wideband Frequencies of a Microstrip Patch Antenna,” J. Comput. Theor. Nanosci., vol. 17, no. 2–3, pp. 1469–1473, 2020.
  • [33] M. Y. Zeain et al., “Design of helical antenna for next generation wireless communication,” Prz. Elektrotechniczny, no. 11, pp. 96–99, 2020.
  • [34] H. B. El-Shaarawy, F. Coccetti, R. Plana, M. El-Said, and E. A. Hashish, Novel Reconfigurable Defected Ground Structure Resonator on Coplanar Waveguide, IEEE Trans. Antennas Propag., vol. 58, no. 11, pp. 3622–3628, 2010.
  • [35] N. AL-Fadhali, H. Majid, and R. Omar, Multiband Frequency Reconfigurable Substrate Integrated Waveguide Antenna using Copper Strip for Cognitive Radio Applicable to Internet of Things Application, Telecommun. Syst., vol. 76, issue 3, pp. 345–358, 2020.
  • [36] A. J. A. Al-gburi et al., “High Gain of UWB CPW-fed Mercedes- Shaped Printed Monopole Antennas for UWB Applications,” Prz. Elektrotechniczny, no. 5, pp. 70–73, 2021.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c942edf0-815e-4f11-91f2-fc6e3a454cf7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.