Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 60, iss. 3 | art. no. 189758
Tytuł artykułu

Identification of tin species released in solution during water leaching of solids from the alkaline smelting (NaOH-KOH) of stanniferous ores

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tin species were studied from Makundju ores in DRCongo. The identification of tin species released in aqueous solution during leaching of solids from the alkaline smelting (NaOH-KOH) was done to prepare added-value mining products on tin ores mined in the eastern DR Congo. Prior to alkaline fusion to have the smelting products (SP), the initial sample (IS) was processed for tests and characterization of tin species. Alkaline fusion in molten KOH-NaOH system was used and leached solution was considered for further analyses. Various physicochemical techniques including X-ray fluorescence spectrometry (XRF), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and FTIR spectroscopy were used to characterize the initial ore and the molten cake. Water leached cake solution at a solid/liquid ratio of 1:10 was used to identify and characterize tin species. ICP-OES analysis of the pH 11.9 solution revealed a content of 4506.3 ppm, which is equivalent to a 95.87% leaching yield. Such yield attests to the stable Sn(OH)2-6(aq) ion as confirmed by UV-Vis. Crystallizations of M2Sn(OH) 6(s) (M = Na and/or K) was studied using XRD, FTIR and TGA. As pH decreases below 9, Sn(OH) )2-6(aq) ion changes to other tin species such as Sn(OH)-5(aq), Sn(OH)4(S), Sn(OH)+3(aq), Sn(OH)2+2(aq), Sn(OH)3+(aq) and Sn4+(aq). The stability of each the tinspecies was determined at different pH values in aqueous solution. Hence, alkaline hexahydroxostannate nanoparticles, used in many electronic applications, can be produced from tin ores.
Wydawca

Rocznik
Strony
art. no. 189758
Opis fizyczny
Bibliogr. 60 poz., rys., tab., wykr.
Twórcy
  • Department of Chemistry, Faculty of Sciences, University of Lubumbashi, Haut-Katanga DR Congo, yumaphalaris@gmail.com
  • Department of Chemistry, Faculty of Sciences, University of Lubumbashi, Haut-Katanga DR Congo
  • Faculty of Sciences, Molecular Science Institute, African Research Universities Alliance-Materials for Energy and Nanotechnology, University of Witwatersrand, Johannesburg, RSA, Kalenga.Mubiayi@wits.ac.za
  • Department of Chemistry, Faculty of Sciences, University of Lubumbashi, Haut-Katanga DR Congo
  • Faculty of Sciences, Molecular Science Institute, African Research Universities Alliance-Materials for Energy and Nanotechnology, University of Witwatersrand, Johannesburg, RSA
  • Faculty of Sciences, Molecular Science Institute, African Research Universities Alliance-Materials for Energy and Nanotechnology, University of Witwatersrand, Johannesburg, RSA
  • Department of Chemistry, Faculty of Sciences, University of Lubumbashi, Haut-Katanga DR Congo
  • Department of Chemistry, Faculty of Sciences, University of Lubumbashi, Haut-Katanga DR Congo
Bibliografia
  • AKILIMALI, S.M. 2016. Gitologie, métallogénie et exploitation minière artisanale dans le Kivu: Bref aperçu sur les gisements stannifères. Article. Le Cahier du BEGE-RDC , Journal pour la promotion des géosciences. Vol. 1, 2, pp. 26-33. 2518-4539 (En ligne), 2518-4520 (Imprimée).
  • ARMOR, J. 1995. Catalytic removal of nitrogen oxides: where are the opportunities?Art., 26(2), 99-105. (E. ScienceDirect, Éd.) Catalysis Today.
  • AYENI, F., ALABI, O., OKARA, R. 2013. The Effects of Blends of Enugu Coal and Anthracite on Tin Smelting Using Nigerian Dogo Na Hauwa Cassiterite. Article, 343-346. Journal of Minerals and Materials Characterization and Engineering.
  • BAIRD, R., CHANG, R., CHEUNG, O., SANNA , A. 2023. High Temperature CO2 Capture Performance and Kinetic Analysis of Novel Potassium Stannate. Article, 24(2321), 1-23. (A. Taubert, Éd.) Int. J. Mol.Sci. MDPI.
  • BANASIK, L., MISKIEWICZ, R., CHOLEWA-DOMANAGIC, A., JANIK, K., KOZLOWSKI, S. (2022). Development of tin metallurgy in Rwanda. Article, 1-7. Metal 2022, Brno, Czech Republic, EU.
  • BISCANS, B. 2020. Cristallisation en solution - Procédés et types d'appareils. Base de données, veille technologique, documentation et expertise technique. Toulouse/France : Techniques de l'Ingénieur.
  • BORDIGNON, M. 2009. Limites d’utilisation des revêtements d’étain en connectique automobile. Archive ouverte pluridisciplinaire HAL Open Sciences, NNT : 2009ENMP1667. Paris: Mécanique [physics.med-ph]. École Nationale Supérieure des Mines de Paris. Récupéré sur https://pastel.hal.science/tel-00460544
  • BOUHDJERA, I., ADDALAA, S., CHALAB, A., HALIMIA, O., BOUDINEA, B., SEBAISA, M., & KARAA, S. 2012. Structural and optical properties of CdSe doped KCl single crystal. Art., 2(1), 34-37. (O. U. Co., Éd.) Journal of New Technology and Materials.
  • BUNNAKKHA, C., JARUPISITTHORN, C. 2012. Extraction of Tin from Hardhead by Oxidation and Fusion with Sodium Hydroxide. 22(01), 1-6. Journal of Metals, Materials and Minerals.
  • BUSCAIL, H. 2018. L’analyse chimique des roches au service de la géologie. Archive ouverte pluridisciplinaire HAL, 83p. Le Puy en Velay, France: Editions universitaires européenne, Université Clermont Auvergne - LVEEM – IUT.
  • CHEMOS, 2022. Tétrachlorure d'étain. Fiche des données et de sécurité. Article. CHEMOS. GHS 4.0- A0008518. France. Pp. 1-11
  • CHENG, C., YANG, F., ZHAO, J., WANG, I., LI, X. 2011. Leaching of heavy metal elements in solder alloys. 53, 1738–1747. Corrosion Science.
  • CLAVIER, D. 2015. Croissance hydrothermale de monocristaux isotypes du quartz-α, étude des propriétés physiques et recherche de nouvelles solutions solides avec des oxydes du bloc p (Ge, Sn) et du bloc d (Mn, V, Ti). Thèse de doctorat, 1-263. Montpellier, France: Université de Montpellier, Cristallographie. CWEA. 2017. Détermination de la perte au feu des déchets, boues et des sédiments. Rapport. Wallonie: Institut Scientifique de Service Public, Métrologie environnementale, Recherche-Analyses, Essais-Expertises.
  • DESHMUKH, P., PESHWE, D., PATHAK, S. 2012. FTIR and TGA analysis in relation with the % crystallinity of the SiO2 obtained by burning rice husk at various temperatures. Art., 585, 75-81. Advanced Materials Research.
  • EL DEEB, A., MORSI, I., ATLAM, A., OMAR, A., FATHY, W. 2015. Pyrometallurgical Extraction of Tin Metal from the Egyptian Cassiterite Concentrate. 6. Egypte: IJSER.
  • FECKO, P., JANKOVA, I., PERTILE, E., KULOVA, E. 2011. Bacterial leaching of Pb – Metallurgical wastes, Metalurgija 50. 1, 33-36. Metalurgija 50.
  • FLORIANO, E., SCALVI, L., SAEKI, M., SAMBRANO, J. 2014. Preparation of TiO2/SnO2 Thin Films by Sol−Gel Method and Periodic B3LYP Simulations. Article, A-I. The Journal of Physical Chemistry, American Chemical Society.
  • GOSTISHCHEV, V., RI, E., DOROFEEV, S., KOMKOV, V., KHOSEN, R. 2008. RF Patent 2333268.
  • GRANT, R. 2001. Tin production in Encyclopedia of materials. 9354-9357. (S. Direct, Éd.) Elsevier.
  • HABASHI, F. 1997. Handbook of Extractive Metallurgy. 2, 683 - 714. New York: WILEY-VCH. doi:ISBN 3-527-28792-2
  • HAVILIK, T., ORAC, D., PETRANIKOVA, M., MISKUFOVA, A. 2011. Hydrometallurgical treatment of used printed circuit boards after. 1542–1546. Waste Management 31.
  • JANARDHAN, E., MAHESHWAR, M., VENKAT, P., JAIPAL, M. 2018. Synthesis of SnO Nanopatricles—A Hydrothermal Approach. Article, 8, 33-37. World Journal of Nano Science and Engineering, Scientific Research Publishing.
  • JHA, M., KUMARI, A., CHOUBEY, P., LEE, J., KUMAR, V., JEONG, J. 2012. Leaching of lead from solder material of waste printed circuit boards (PCBs). 28–34. Hydrometallurgy 121-124.
  • JIANG, Y., JIANG, N., LIANG, K., YUAN, C., FANG, X., XU, A. 2013. A simple and general route to prepare functional mesoporous double-metal oxy(hydroxide). Art., 1(3), 1-8. (R. S. Chemistry, Éd.) Journal of Materials Chemistry A.
  • KAMINSKI, E. 2001. Comment connaître la teneur en masse d'un élément si l'on ne connaît que la teneur en masse de son oxyde? Ressources scientifiques pour l'enseignement es sciences de la Terre et de l'Univers. Paris : Eduscol, Planet-Terre
  • KIKOUAMA, J., KONAN, K., KATTY, A., BONNET, J., BALDE, L., YAGOUBI, N. 2009. Physicochemical characterization of edible clays and release of trace elements. Art., 43, 135–141. (ScienceDirect, Elsevier, Éd.) Applied Clay Science. doi:10.1016/j.clay.2008.07.031
  • KODAMA, R., TERADA, Y., NAKAI, I., KOMABA, S., KUMAGAI, N. 2006. Electrochemical and In Situ XAFS-XRD Investigation of Nb2O5 for Rechargeable Lithium Batteries. Article, 153(3), A583-A588. Journal of The Electrochemical Society.
  • LAGHRIB , S. 2018. Synthèse des films minces de : SnO2, SnO2: In par deux procédés physique et chimique et étude de leur caractérisation. Thèse de Doctorat, 139p. Setif, Algérie: Université ABBAS- SETIF, Faculté des Sciences de l'Ingénieur, Département de Génie des Procédés .
  • LALASARI, L., ANDRIYAH, L., ARINI, T., FIRDIYONO, F. 2018. The effect of temperature and addition of reducing agent on sodium stannate preparation from cassiterite by the alkaline roasting process. Art., 020022, 1-9. (P. o. 2017), Éd. AIP Conference Proceedings 1945.
  • LI, Q., ZHANG, H., CHENG, B., ZOU, B., & CUI, T. 2014. Pressure-induced amorphization in orthorhombic Ta2O5: An intrinsic character of crystal. Article, 115(193512), 1-4. Journal of Applied Physics.
  • MARINHO, J., MONTES, R., DE MOURA, A., LONGO, E., VARELA, J., MUNOZ, R., LIMA, R. 2014. Rapid preparation of a-FeOOH and a-Fe2O3 nanostructures by microwave heating and their application in electrochemical sensors. Article, 49, 572–576. Materials Research Bulletin, Elsevier.
  • MIAO, X., CHEN, R., & CHENG, W. 2017. Synthesis and Characterization of Cu2FeSnS4 Thin Films Prepared by Electrochemical Deposition. Article, 1-8. Materials Letters. doi:http://dx.doi.org/10.1016/j.matlet.2017.01.099
  • MOSHTAGHI, S., ZINATLOO-AJABSHIR, S., SALAVATI-NIASARI, M. 2015. Nanocrystalline barium stannate: facile morphology-controlled preparation, characterization and investigation of optical and photocatalytic properties. Art., 1-9. New York: J Mater Sci: Mater Electron.
  • NAKAMOTO, K. (2008). Infrared and Raman Spectra of Inorganic and Coordination Compounds. Volume 0. Theory of Normal Vibrations. 10.1002/9780470405840(), 1–147.
  • NAMWONG, P., LAORODPHAN, N., THIEMSORN, W., JAIMASITH, M., WANNAKON , A., CHAIRUANGSRI, T. 2010. A Barium-Calcium Silicate Glass for Use as Seals in Planar SOFCs. Article, 37(2),: 231-242. Chiang Mai J. Sci., j
  • NAVARRO, C., AGUDO, E., LUQUE, A., NAVARRO, A., HUERTAS, A. 2009. Thermal decomposition of calcite: Mechanisms of formation and textural evolution of CaO nanocrystals. Article, 94(1), 578–593. American Mineralogist.
  • PALANISAMY, S., SRINIVASAN, S., PRABHAKARAN, A., RAJENDHRAN, N., SUBRAMANI, K., MURUGAN, V., VENKATACHALAM, R. 2019. Infuence of nanofower FeTiO3 in carbon dioxide reduction. Artile, 1(1230), 1-10. Switzerland: SN Applied Sciences, Springer Nature Switzerland AG.
  • PEARSON, D., HOLD, G., WINTER, D. 1977. Développement d’un procédé hydrométallurgique pour l’extraction d’étain de concentrés pauvres : 1-préparation d’une phase vitreuse lixiviable. Transactions C (GB) 86(9). London: Institution of Mining and Metallurgy.
  • RANGEL, J., SANTOS, H., OLIVEIRA, M., LONGO, E. 2011. Sintese e caracterização estrutural de SnO2 dopado com Ni. 4, 112-127. Holos, Brésil: Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte. Récupéré sur http://www.redalyc.org/articulo.oa?id=481549217008
  • SAMAHI, H. 2019. Synthèse et caractérisation des complexes bases de Schiff d'étain et du nickel. Msc. Biskra: Université Mohamed Khider de Biskra, Fac. Sc. et Techn.
  • SERGENT, N., GELIN, P., PERIER-CAMBYA, L., PRALIAUD, H., THOMAS, G. 2002. Preparation and characterisation of high surface area stannic oxides: structural, textural and semiconducting properties. Article, 54, 176–188. (Elsevier, Éd.) Sensors and Actuators B.
  • SLADKEVICH, S., GUTKIN, V., LEV, O., LEGUROVA, E., KHABIBULIN, D., FEDOTOV, M., PRIKHODCHENKO, P. 2009. Hydrogen peroxide induced formation of peroxystannate nanoparticles. Art., 50, 229-240. (Springer, Éd.) J Sol-Gel Sci Technol.
  • SURESH, K., SURENDHIRAN, S., MANOJ KUMAR, P., RANJTH KUMAR, E., SYED KHADAR, Y., BALAMURUGAN, A. 2020. Green synthesis of SnO2 nanoparticles using Delonix elata leaf extract: Evaluation of its structural, optical, morphological and photocatalytic properties. Research Article, 2(1735). SN Applied Sciences.
  • TABELIN, C., VEERAWATTANANUN, S., ITO, M., IGARASHI, T. 2016. Pyrite oxidation in the presence of hematite and alumina: I. Batch leaching experiments and kinetic modeling calculations. Article. Science of the Total Environment.
  • TANG, X., TONG, A., ZHANG, F., WANG, B. 2020. Quantitative Analysis of NaCl, NaOH, and β-phenylethylamine in Water using Ultraviolet Spectroscopy coupled with Partial Least Squares and Net Analyte. Article, 49(8), pp1773-1785. Sains Malaysiana.
  • TORRE-ABREU, C., RIBEIRO, M., HENRIQUES, C., RIBEIRO, F. 1997. Influence of cocation on catalytic activity of CuMOR catalysts for NO SCR by propene. Effect of water presence. Art., 43, 25-29. Catalysis Letters.
  • THRIVENI, T., NAM, S., & AHN, J. 2014. Enhancement of arsenic removal efficiency from mining waste water by accelerated carbonation. Article, 1-7. Santiago: IMPC.
  • WANG, J., WANG, J., GUO, X., YANG, H. 2022. Construction of Macroporous Co2SnO4 with Hollow Skeletons as Anodes for Lithium-Ion Batteries. Art., 8(257). Gels.
  • WIDMANN, G. 2001. Conseils TA: Interprétation des courbes de TGA.13, 1-20. (M. TOLEDO, Éd.) Schwerzenbach, Switzerland: UserCom 1.
  • WU, X., LV, G., HU, X., TANG, Y. 2012. A Two-StepMethod to Synthesize BaSn(OH)6 Crystalline Nanorods and Their Thermal Decomposition to Barium Stannate. Art., 2012, 1-6. (T. Zhu, Éd.) Journal of Nanomaterials.
  • XUAN., W. 2022. Développement d’un procédé hydrométallurgique pour le recyclage des électrodes positives de type NMC contenues dans les batteries lithium-ion usagées. Archive ouverte pluridisciplinaire HAL open Sciences, NT : 2022LORR0074. Lorraine, France: Génie chimique. Université de Lorraine. Récupéré sur https://hal.univlorraine.fr/tel-03796693v2
  • YANG, D., WU, Z., REN, K., DONG, P., ZHANG, D., YANG, B., LIANG, F. 2023. RecentAdvances of the ThermodynamicBehavior of Tin Species in Aqueous Solution. 59(00). Journal of Mining and Metallurgy. Section B Metallurgy 59(00), 1-1.
  • YUMA, P., KITUNGWA, B., KATEULE, C., KYONA, C., WAKENGE, I. 2020. Hydrometallurgical extraction of tin from cassiterite ore in Kalima (DR Congo) by alkaline fusion with eutectic mixture of alkali hydroxides (sodium and potassium). Art., 13(5), 60-67. (IOSR, Éd.) IOSR Journal of Applied Chemistry (IOSR-JAC).
  • ZERZOUF, O. 2005. Contribution à la synthèse des monocristaux d’hexahydroxostannate de métaux bivalents et détermination de leurs structures cristallographiques. Thèse, 119p. Osnabrueck: l’université Osnabrueck, Dpt Biologie/Chimie.
  • ZHANG, R., HE, Y., XU, L. 2014. Controllable Synthesis of Hierarchical ZnSn(OH)6 and Zn2SnO4 Hollow Nanospheres and Their Applications as Anodes for Lithium Ion Batteries. Art., 2(5), 17979–17985. J. Mater. Chem. A.
  • ZHANG, Y., HAN, B., SU, Z., CHEN, X., LIU, S., LIU, J., JIANG, T. 2019. Effect of quartz on the preparation of sodium stannate from cassiterite concentrates by soda roasting process. Art., 1-13. (MDPI, Éd.) Minerals.
  • ZHANG, Y., YOULIAN, Z., LIU, B. 2016. Reduction behavior of SnO2 in the tin-bearing iron concentrates under CO–CO2 atmosphere. Part I: Effect of magnetite. Article, 251-259. Powder Technology.
  • ZHAO, H., SHI, M., ZOU, J., YANG, B., LI, Y., WANG, Z., CHANG, C. 2016. Synthesis and luminescent properties of a new cyan afterglow phosphor CaSnO3: Gd3+. Article, 1-5. Ceramics International, Elsevier. doi:
  • ZHUANG, G., JIN, Y., ZHAO, H., KONG, X., LONG, L., HUANG , R., ZHENG, L. 2010. A nanosized Gd6Ni3 clusterbased heterometallic coordination polymer. Art., 39, 5077–5079. (T. R. Chemistry, Éd.) Dalton Transactions.
  • ZIJIAN, S., ZHANG, Y., LIU, B., CHEN, Y., LI, G., JIANG, T. 2017. Formation mechanisms of Fe3−xSnxO4 by a chemical vapor transport (CVT) process. (C. S. School of Minerals Processing and Bioengineering, Éd.) Changsha, China: Scientific Reports.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c8d79703-9007-40c6-ac4c-2aa6ecec0037
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.