Warianty tytułu
Języki publikacji
Abstrakty
Despite the existence of accurate mathematical models facilitating the analysis of photovoltaic (PV) sources’ behaviour under diverse conditions, including normal operation and situations involving mismatch phenomena such as partial shadowing and various faults (i.e., PV cells operating in forward bias and reverse bias quadrants), an important issue still persists. Crucial parameters essential for adjusting these models, particularly those related to reverse-biased characteristics such as breakdown voltage, are often absent in manufacturers’ datasheets. This omission presents a substantial challenge, as it restricts the ability to acquire comprehensive and accurate information required for a thorough analysis of devices in the second quadrant. To address this issue, our research introduces a novel method for measuring the reverse-biased I–V characteristics of individual PV cells within a module without having to dissociate them from the PV module encapsulants. The process involves measuring the forward-bias I–V curves of both the fully illuminated PV module and a partially shaded PV module with only one completely shaded cell. This can be achieved outdoors and by utilising commercially available I–V tracers. Thus, the reverse I–V curve can easily be derived from these forward bias I–V curves. Finally, the proposed method serves as a nondestructive technique for characterising solar cells in the second quadrant. This innovative approach offers a promising solution for assessing the performance and health of PV modules without causing damage and may result in significant cost savings.
Czasopismo
Rocznik
Tom
Strony
412--427
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
- Department of Electronics, Faculty of Technology, University of M’sila, 28000 M’sila, Algeria, mahmoud.drif@univ-msila.dz
autor
- Department of Electronics, Faculty of Technology, University of M’sila, 28000 M’sila, Algeria
autor
- Department of Electronics, Faculty of Technology, University of M’sila, 28000 M’sila, Algeria
- Department of Electronics, Faculty of Technology, University of M’sila, 28000 M’sila, Algeria
autor
- Department of Electronics, Faculty of Technology, University of M’sila, 28000 M’sila, Algeria
Bibliografia
- Aktaş, A. and Kirçiçek, Y. (2021). Chapter 1 – Solar system characteristics, advantages, and disadvantages. In: Solar Hybrid Systems-Design and Application. 1st edition, 2021. Academic Press. pp. 1–24. doi: 10.1016/B978-0-323-88499-0.00001-X.
- Babu, B. C., Gurjar, S. and Meher, A. (2015). Analysis of Photovoltaic (PV) Module During Partial Shading Based on Simplified Two-Diode Model. International Journal of Emerging Electric Power Systems, 16(1), pp. 15–21 doi: 10.1515/ijeeps-2014-0164.
- Bastidas, JD., Franco, E., Petrone, G., Ramos-Paja, CA. and Spagnuolo, G. (2013). A Model of Photovoltaic Fields in Mismatching Conditions Featuring an Improved Calculation Speed. Electric Power Systems Research, 96, pp. 81–90. doi: 10.1016/j.epsr.2012.10.020.
- Batzelis, E. I., Anagnostou, G., Chakraborty, C. and Pal, B. C. (2020). Computation of the Lambert W Function in Photovoltaic Modeling. Electrimacs, 604, pp. 583–595.
- Batzelis, E. I., Routsolias, I. A. and Papathanassiou, S. A. (2014). An Explicit PV String Model Based on the Lambert W Function and Simplified MPP Expressions for Operation Under Partial Shading. IEEE Transactions on Sustainable Energy, 5(1), pp. 301–312. doi: 10.1109/TSTE.2013.2282168
- Bishop, J. W. (1988). Computer Simulation of the Effects of Electrical Mismatches in Photovoltaic Cell Interconnection Circuits. Solar Cells, 25, pp. 73–89. doi: 10.1016/0379-6787(88)90059-2
- Ćalasan, M., Abdel, S. H. E. and Zobaa, A. F. (2020). On the Root Mean Square Error (RMSE) Calculation for Parameter Estimation Of Photovoltaic Models: A Novel Exact Analytical Solution Based on Lambert W Function. Energy Conversion and Management, 210, p. 112716. doi: 10.1016/j.enconman.2020.112716
- Duong, M. Q., Sava, G. N., Ionescu, G., Necula, H., Leva, S. and Mussetta, M. (2017). Optimal bypass diode configuration for PV arrays under shading influence. In: IEEE International Conference on Environment and Electrical Engineering, 0609 June 2017, Milan, Italy: IEEE. doi: 10.1109/EEEIC.2017.7977526.
- Drif, M., Bahri, M. and Saigaa, D. (2021). A Novel Equivalent Circuit-Based Model for Photovoltaic Sources. Optik – International Journal for Light and Electron Optics, 242, p. 167046. doi: 10.1016/j.ijleo.2021.167046.
- Gallardo-Saavedra, S. and Karlsson, B. (2018). Simulation, Validation and Analysis of Shading Effects on a PV System. Solar Energy, 170, pp. 828–839. doi: 10.1016/j.solener.2018.06.035
- Gbadega Peter, A. and Saha, A. K. (2019). Electrical characteristics improvement of photovoltaic modules using two-diode model and its application under mismatch conditions. In: Southern African Universities Power Engineering Conference, 28–30 January 2019, Bloemfontein, South Africa: IEEE, pp. 328–333. doi: 10.1109/RoboMech.2019.8704846.
- Häberlin, H. (2012). Photovoltaics: System Design and Practice, 1st ed. Wiley-Interscience Publication. Chichester, West Sussex, United Kingdom.
- Hurkx, G. A. M., de Graaff, H. C., Kloosterman, W. J. and Knuvers, M. P. G. (1992). A New Analytical Diode Model Including Tunneling and Avalanche Breakdown. IEEE Transactions on Electronic Devices, 39(9), pp. 2090–2098. doi: 10.1109/16.155882.
- Ishaque, K., Salam, Z. and Taheri, H. (2011). Simulation Modelling Practice and Theory Modeling and simulation of photovoltaic system during partial shading based on a two-diode model. Simulation Modeling Practice and Theory, 19(7), pp. 1613–1626.
- Ishaque, K. and Salam, Z. (2013). A Review of Maximum Power Point Tracking Techniques of PV System for Uniform Insolation and Partial Shading Condition. Renewable and Sustainable Energy Reviews, 19, 475–488. doi: 10.1016/j.rser.2012.11.032.
- Jain, A. and Kapoor, A. (2004). Exact Analytical Solutions of the Parameters of Real Solar Cells Using Lambert W-Function. Solar Energy Materials and Solar Cells, 81, pp. 269–277. doi: 10.1016/j.solmat.2003.11.018
- Jain, A., Sharma, S. and Kapoor, A. (2006). Solar Cell Array Parameters Using Lambert W-Function. Solar Energy Materials and Solar Cells, 90(1), pp. 25–31. doi: 10.1016/j.solmat.2005.01.007
- Kadri, R., Andrei, H., Gaubert, J. P., Ivanovici, T., Champenois, G. and Andrei, P. (2012). Modeling of the Photovoltaic Cell Circuit Parameters for Optimum Connection Model and Real-Time Emulator with Partial Shadow Conditions. Energy, 42(1), pp. 57–67. doi: 10.1016/j.energy.2011.10.018
- Karatepe, E., Boztepe, M. and Colak, M. (2007). Development of a Suitable Model for Characterizing Photovoltaic Arrays with Shaded Solar Cells. Solar Energy, 81(8), pp. 977–992.
- Kim, K. A., Xu, C., Jin, L. and Krein, P. T. (2013). Photovoltaic Hot-Spot Detection for Solar Panel Substrings Using AC Parameter Characterization. IEEE Journal pp. 1134–1341. of Photovoltaics, 3(4),
- Kermadi, M., Chin, V. J., Mekhilef, S. and Salam, Z. (2020). A Fast and Accurate Generalized Analytical Approach for PV Arrays Modeling Under Partial Shading Conditions. Solar Energy, 208, pp. 753–765. doi: 10.1016/j.solener.2020.07.077
- Kreft, W., Przenzak, E. and Filipowicz, M. (2021). Photovoltaic Chain Operation Analysis in Condition of Partial Shading for Systems with and Without Bypass Diodes. Optik, 247, 167840. doi: 10.1016/j.ijleo.2021.167840
- Lun, S. X., Wang, S., Yang, G. H. and Guo, T. T. (2015). A New Explicit Double-Diode Modeling Method Based on Lambert W-Function for Photovoltaic Arrays. Solar Energy, 116(2015), pp. 69–82. doi: 10.1016/j.solener.2015.03.043
- Moreira, H. S., de Souza Silva, J. L., dos Reis, M. V. G., de Bastos Mesquita, D., de Paula, P. H. K. and Villalva, M. G. (2021). Experimental Comparative Study of Photovoltaic Models for Uniform and Partially Shading Conditions. Renewable Energy, 164, pp. 58–73. doi: 10.1016/j.renene.2020.08.086.
- Nehme, B., Sirdi, N. K. M., Akiki, T., Naamane, A. and Zeghondy, B. (2021). Chapter 2 – Photovoltaic Panels Life Span Increase by Control. Predictive Modelling for Energy Management and Power Systems Engineering, 1st edition, Elsevier. pp. 2762. doi:10.1016/B978-0-12-817772-3.00002-1.
- Ortiz-Conde, A. and Sánchez, F. J. G. (2005). Extraction of Non-Ideal Junction Model Parameters from the Explicit Analytic Solutions of its I-V Characteristics. Solid-State Electronics, 49, pp. 465–472. doi: 10.1016/j.sse.2004.12.001
- Paraskevadaki, E. V., Papathanassiou, S. A. and Member, S. (2011). Evaluation of MPP Voltage and Power of mc-Si PV Modules in Partial Shading Conditions. IEEE Transactions on Energy Conversion, 26(3), 923–932. doi: 10.1109/TEC.2011.2126021.
- Patel, H. and Agarwal, V. (2008). MATLAB-Based Modeling to Study the Effects of Partial Shading on PV Array Characteristics. IEEE Transactions On Energy Conversion, 23(1), pp. 302–310. doi: 10.1109/TEC.2007.914308.
- Peng, L., Sun, Y. and Meng, Z. (2013). An Improved Model of Photovolatic Cell Using Lambert W Function. Applied Mechanics and Materials, 370, pp. 1196–1200.
- Petrone, G., Spagnuolo, G. and Vitelli, M. (2007). Analytical Model of Mismatched Photovoltaic Fields by Means of Lambert W-Function. Solar Energy Materials and Solar Cells, 91(18), pp. 1652–1657.
- Petrone, G. and Ramos-Paja, C. (2011). Modeling of Photovoltaic Fields in Mismatched Conditions for Energy Yield Evaluations. Electric Power Systems Research, 81, pp. 1003–1013. doi: 10.1016/j.epsr.2010.12.008.,
- Petrone, G., Ramos-Paja, C. A. and Spagnuolo, G. (2017). Photovoltaic Sources Modeling. John Wiley & Sons Ltd. Chichester, West Sussex, United Kingdom.
- Picault, D., Raison, B., Bacha, S., de la Casa, J. and Aguilera, J. (2010). Forecasting Photovoltaic Array Power Production Subject to Mismatch Losses. Solar Energy, 84(7), pp. 1301–1309. 426
- Quashning, V. (2005). Understanding Renewable Energy. Earth Scan: London, UK.
- Quashning, V. and Hanitsch, R. (1996). Numerical Simulation of Current-Voltage Characteristics of Photovoltaic Systems with Shaded Solar Cells. Solar Energy, 56(6), pp. 513–520.
- Ramabadran, R. (2009). MATLAB Based Modelling and Performance Study of Series Connected SPVA Under Partial Shaded Conditions. Journal of Sustainable Development, 2(3), pp. 85–94.
- Rathee, R. (2013). Comparative Analysis to Study the Effects of Partial Shading on PV Array with LT-Spice and Matlab/Simulink Environment. International Journal of Engineering Research and Technology (IJERT), 2(5), pp. 1505–1508.
- Roibás-Millán, E., Cubero-Estalrrich, J. L., GonzalezEstrada, A., Jado-Puente, R., Sanabria-Pinzón, M., Alfonso-Corcuera, D., Álvarez, J. M., Cubas, J. and Pindado, S. (2020). Lambert W-Function Simplified Expressions for Photovoltaic Current-Voltage Modelling. In: IEEE International Conference on Environment and Electrical Engineering, 09–12 June 2020, Madrid, Spain: IEEE, pp. 1–6. doi: 10.1109/EEEIC/ICPSEurope49358.2020.9160734.
- Roger, A. and Maguin, C. (1982). Photovoltaic Solar Panel Simulation Including Dynamical Thermal Effects. Solar Energy, 29(3), pp. 245–256. doi: 10.1016/0038-092X(82)90210-9.
- Samer, S., Ahmed, B. M. and Shehab, A. (2012). A Matlab/Simulink-Based Photovoltaic Array Model Employing Simpowersystems Toolbox. Journal of Energy and Power Engineering, 6(12), pp. 19651975.
- Subramanian, Y. and Darling, R. B. (2001). Compact Modeling of Avalanche Breakdown in pn-Junctions for Computer-aided ESD Design (CAD for ESD). In: Proceedings International Conference on Modeling and Simulation of Microsystems, 19-21 March, 2001, South Carolina, USA. Vol. (1). pp. 48–51.
- Tripathy, M., Kumar, M. and Sadhu, P. K. (2017). Photovoltaic System using Lambert W FunctionBased Technique. Solar Energy, 158, pp. 432–439. doi: 10.1016/j.solener.2017.10.007
- Varshney, S. K., Khan, Z. A., Husain, M. A. and Tariq, A. (2016). A comparative study and investigation of different diode models incorporating the partial shading effects. In: International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 03–05 March 2016, Chennai, India: IEEE, pp. 3145–3150. doi: 10.1109/ICEEOT.2016.7755281.
- Villalva, M., Gazoli, J. and Filho, E. (2009). Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays. IEEE Transactions on Power Electronics, 24(5), pp. 1198–1208. doi: 10.1109/TPEL.2009.2013862.
- Wang, Y. and Hsu, P. (2009). Analytical Modelling of Partial Shading and Different Orientation of Photovoltaic Modules. IET Renewable Power Generation, 4(3), pp. 272–282. doi: 10.1049/ietrpg.2009.0157.
- Wei, W., Ning, L. and Shaoyuan, L. (2012). A Real-time Modeling of Photovoltaic Array. Chinese Journal of Chemical Engineering, 20(6), pp. 1154–1160. doi: 10.1016/S1004-9541(12)60601-6.
- Yin, O. W. and Babu, B. C. (2018). Simple and Easy Approach for Mathematical Analysis of Photovoltaic (PV) Module Under Normal and Partial Shading Conditions. Optik – International Journal for Light and Electron Optics, 169, pp. 48–61. doi: 10.1016/j.ijleo.2018.05.037.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c821ca0c-f0f7-44c1-a0d2-a1f9c6d91ce7