Warianty tytułu
Języki publikacji
Abstrakty
A quasi-Z-source network is used to boost the DC bus voltage of a voltage source two-level H-bridge inverter to increase the voltage gain. With the increase in the DC bus voltage, the common mode voltage (CMV) also increases. The CMV is reduced using virtual space vector pulse width modulation (SVPWM). Due to the presence of a quasi-Z-source network, the expression of the CMV changes significantly with respect to the conventional voltage source two-level H-bridge inverter fed from a pure DC supply. In this paper, a detailed analysis of the origin of the CMV for the quasi-Z-source two-level H-bridge inverter is presented. Additionally, it is shown how the CMV is affected for a DC input supply taken from a three-phase diode bridge rectifier. The work also details the scheme for suitable placement of shoot-through time intervals required for boosting within the non-active time intervals in virtual SVPWM. The simulation and experimental results show the scheme is effective in increasing the voltage gain and reducing the CMV arising at the third harmonic of the desired output frequency by at least 33.33%.
Czasopismo
Rocznik
Tom
Strony
272--291
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Electrical Engineering Department, IIEST, Shibpur, Howrah, India, debalina.rs2017@ee.iiests.ac.in
autor
- Electrical Engineering Department, IIEST, Shibpur, Howrah, India
autor
- Electrical Engineering Department, IIEST, Shibpur, Howrah, India
Bibliografia
- Akagi, H. and Doumoto, T. (2004). An Approach to Eliminating High-Frequency Shaft Voltage and Ground Leakage Current from an InverterDriven Motor. IEEE Transactions on Industry Applications, 40(4), pp. 1162–1169. doi: 10.1109/TIA.2004.830748.
- Akagi, H. and Tamura, S. (2006). A Passive EMI Filter for Eliminating Both Bearing Current and Ground Leakage Current from an Inverter-Driven Motor. IEEE Transactions on Power Electronics, 21(5), pp. 1459–1469. doi: 10.1109/TPEL.2006.880239.
- Anderson, J. and Peng, F. Z. (2008). Four quasi-ZSource inverters. In: Proceedings of the IEEE Power Electronics Specialists Conference, Greece, 15–19 June 2008, pp. 2743–2749.
- Cacciato, M., Consoli, A., Scarcella, G., Scelba, G. and Testa, A. (2009). Modified space-vector-modulation technique for common mode currents reduction and full utilization of the DC bus. In: Proceedings of 2009 24th Annual IEEE Applied Power Electronics Conference and Exposition, Washington, DC, USA, 15–19 February 2009, pp. 109–115.
- Cacciato, M., Consoli, A., Scarcella, G. and Testa, A. (1999). Reduction of Common Mode Currents in PWM Inverter Motor Drives. IEEE Transactions on Industry Applications, 35(2), pp. 469–476. doi: 10.1109/28.753643.
- Cavalcanti, M. C., de Oliveira, K. C., de Farias, A. M., Azevedo, G. M. S., Neves, F. A. S. and Camboim, F. C. (2010). Modulation Techniques to Eliminate Leakage Currents in Transformer Less ThreePhase Photovoltaic Systems. IEEE Transactions on Industrial Electronics, 57(4), pp. 1360–1368. doi: 10.1109/TIE.2009.2029511.
- Chatterjee, D., Chakraborty, C., Mukherjee, K. and Dalapati, S. (2023a). Current Zero-Crossing Shift for Compensation of Dead-Time Distortion in Pulse Width Modulated Voltage Source Inverter. Power Electronics and Drives, 8(43), pp. 84–99. doi: 10.2478/pead-2023-0007.
- Chatterjee, D., Chakraborty, C. and Dalapati, S. (2023b). Pulse Width Modulation Techniques in Two-level Voltage Source Inverters – State of the Art and Future Perspectives. Power Electronics and Drives, 8(43), pp. 335–367. doi: 10.2478/pead-2023-0023.
- Chen, H. and Zhao, H. (2016). Review on PulseWidth Modulation Strategies for Common-Mode Voltage Reduction in Three-Phase Voltage-Source Inverters. IET Power Electronics, 9(14), pp. 26112620. doi: 10.1049/iet-pel.2015.1019.
- Fan, L., Liu, Z., Liang, Y., Li, H., Rao, B., Yin, S. and Jiang, D. (2023). Analysis and Utilization of Common-Mode Voltage in Inverters for Power Supply. IEEE Transactions on Power Electronics, 38(7), pp. 8811–8824. doi: 10.1109/TPEL.2023.3267974.
- Gajanayake, C. J., Luo, F. L., Gooi, H. B., So, P. L. and Siow, L. K. (2010). ExtendedBoost Z-Source Inverters. IEEE Transactions on Power Electronics, 25(10), pp. 2642–2651. doi: 10.1109/TPEL.2010.2050908.
- Hava, A. M. and Un, E. (2011). A High-Performance PWM Algorithm for Common-Mode Voltage Reduction in Three-Phase Voltage Source Inverters. IEEE Transactions on Power Electronics, 26(7), pp. 1998–2008. doi: 10.1109/TPEL.2010.2100100.
- Hedayati, M. H., Acharya, A. B. and John, V. (2013). Common-Mode Filter Design for PWM RectifierBased Motor Drives. IEEE Transactions on Power Electronics, 28(11), pp. 5364–5371. doi: 10.1109/TPEL.2013.2238254.
- Hou, C.-C., Shih, C.-C., Cheng, P.-T. and Hava, A. M. (2013). Common-Mode Voltage Reduction Pulse Width Modulation Techniques for Three-Phase Grid Connected Converters. IEEE Transactions on Power Electronics, 28(4), pp. 1971–1979. doi: 10.1109/TPEL.2012.2196712.
- Jeong, S.-G. and Park, M.-H. (1991). The Analysis and Compensation of Dead-Time Effects in PWM Inverters. IEEE Transactions on Industrial Electronics, 38(2), pp. 108–114. doi: 10.1109/41.88903.
- Jiang, Y., Zhang, J., Wang, Q., He, F. and Zhang, W. (2023). A Common-Mode Voltage Reduction PWM Strategy for Three-Phase Quasi-Z-Source Inverter with Optimized Switching Losses. IEEE Access, 11, pp. 91891–91903. doi: 10.1109/ACCESS.2023.3308148.
- Lai, Y. S. and Shyu, F. S. (2004). Optimal CommonMode Voltage Reduction PWM Technique for Inverter Control with Consideration of the DeadTime Effects Part I: Basic Development. IEEE Transactions on Industry Applications, 40(6), pp. 1605–1612. doi: 10.1109/TIA.2004.836151. 290
- Liu, Y., Ge, B., Xu, D., Abu-Rub, H. and Peng, F. Z. (2014). Overview of Space Vector Modulations for Three-Phase Z-Source/Quasi-Z-Source Inverters. IEEE Transactions on Power Electronics, 29(4), pp. 2098–2108. doi: 10.1109/TPEL.2013.2269539.
- Loh, P. C., Vilathgamuwa, D. M., Lai, Y. S., Chua, G. T. and Li, Y. (2005). Pulse-Width Modulation of Z-Source Inverters. IEEE Transactions on Power Electronics, 20(6), pp. 1346–1355. doi: 10.1109/TPEL.2005.857543.
- Nanda, D., Syam, P. and Mukherjee, K. (2019). Selection procedure of Z–network parameters for a SVPWM Voltage fed ZSI under varying input voltage conditions with simulated performance. In: Proceedings of 2019 IEEE Region 10 Symposium (TENSYMP), Kolkata, India, 7–9 June 2019, pp. 361–366.
- Nguyen, M.-K., Lim, Y.-C. and Cho, G.-B. (2011). Switched-Inductor Quasi-Z-Source Inverter. IEEE Transactions on Power Electronics, 26(11), pp. 3183–3190. doi: 10.1109/TPEL.2011.2141153.
- Noroozi, N., Yaghoubi, M. and Zolghadri, M. R. (2019). A Modulation Method for Leakage Current Reduction in a Three-Phase Grid-Tie Quasi-ZSource Inverter. IEEE Transactions on Power Electronics, 34(6), pp. 5439–5450. doi: 10.1109/TPEL.2018.2868799.
- Noroozi, N. and Zolghadri, M. R. (2018). Three-Phase Quasi-Z-Source Inverter with Constant CommonMode Voltage for Photovoltaic Application. IEEE Transactions on Industrial Electronics, 65(6), pp. 4790–4798. doi: 10.1109/TIE.2017.2774722.
- Peng, F. Z. (2003). Z-Source Inverter. IEEE Transactions on Industry Application, 39(2), pp. 504–510. doi: 10.1109/TIA.2003.808920.
- Peng, F. Z., Joseph, A., Wang, J., Shen, M., Chen, L., Pan, Z., Ortiz-Rivera, E. and Huang, Y. (2005a). Z-Source Inverter for Motor Drives. IEEE Transactions on Power Electronics, 20(4), pp. 857863. doi: 10.1109/TPEL.2005.850938.
- Peng, F. Z., Shen, M. and Qian, Z. (2005b). Maximum Boost Control of the Z-Source Inverter. IEEE Transactions on Power Electronics, 20(4), pp. 833838. doi: 10.1109/TPEL.2005.850927.
- Peng, F. Z., Yuan, X., Fang, X. and Qian, Z. (2003). Z-Source Inverter for Adjustable Speed Drives. IEEE Power Electronics Letters, 1(2), pp. 33–35. doi: 10.1109/LPEL.2003.820935.
- Roomi, M. M. (2019). An Overview of Carrier-based Modulation Methods for Z-Source Inverter. Power Electronics and Drives, 4(39), pp. 15–31. doi: 10.2478/pead-2019-0007.
- Sabat, J., Mangaraj, M., Barisal, A. K., Patra, A. K. and Chahattaray, A. K. (2022). Performance Evaluation of BB-QZSI Based DSTATCOM under Dynamic Load Condition. Power Electronics and Drives, 7(42), pp. 43–55. doi: 10.2478/pead-2022-0004.
- Tian, K., Wang, J., Wu, B., Xu, D., Cheng, Z. and Zargari, N. R. (2016). A Virtual Space Vector Modulation Technique for the Reduction of Common-Mode Voltages in Both Magnitude and Third-Order Component. IEEE Transactions on Power Electronics, 31(1), pp. 839–848. doi: 10.1109/TPEL.2015.2408812.
- Ün, E. and Hava, A. M. (2009). A Near-State PWM Method with Reduced Switching Losses and Reduced Common-Mode Voltage for Three-Phase Voltage Source Inverters. IEEE Transactions on Industry Applications, 45(2), pp. 782–793. doi: 10.1109/TIA.2009.2013580.
- Vinnikov, D. and Roasto, I. (2011). Quasi-Z-SourceBased Isolated DC/DC Converters for Distributed Power Generation. IEEE Transactions on Industrial Electronics, 58(1), pp. 192–201. doi: 10.1109/TIE.2009.2039460.
- Yuen, K. K. F., Chung, H. S. H. and Cheung, V. S. P. (2012). An Active Low-Loss Motor Terminal Filter for Overvoltage Suppression and Common-Mode Current Reduction. IEEE Transactions on Power Electronics, 27(7), pp. 3158–3172. doi: 10.1109/TPEL.2011.2178865.
- Zhao, Z., Zhong, Y., Gao, H., Yuan, L. and Lu, T. (2012). Hybrid Selective Harmonic Elimination PWM for Common-Mode Voltage Reduction in Three-Level Neutral-Point-Clamped Inverters for Variable Speed Induction Drives. IEEE Transactions on Power Electronics, 27(3), pp. 1152–1158. doi: 10.1109/TPEL.2011.2162591.
- Zhu, N., Kang, J., Xu, D., Wu, B. and Xiao, Y. (2012). An Integrated AC Choke Design for Common-Mode Current Suppression in Neutral-Connected Power Converter Systems. IEEE Transactions on Power Electronics, 27(3), pp. 1228–1236. doi: 10.1109/TPEL.2011.2162748.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c7e41f9e-cf88-48ea-ba75-906202af54f3