Czasopismo
2014
|
R. 90, nr 8
|
199-204
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Metody selekcji cech diagnostycznych w zastosowaniu do ekspresji genów: baza danych autyzmu
Języki publikacji
Abstrakty
The paper presents the application of several different feature selection methods for recognizing the most significant genes and gene sequences (treated as features) stored in dataset of gene expression microarray related to autism. The outcomes of each method have been examined by analyzing gene expression profiles of selected genes. In the next step fusion of the most relevant features selected by different methods, has been implemented. The optimal number of features has been defined as the set providing the best clustering purity.
Praca prezentuje badanie wybranych metod selekcji cech diagnostycznych w celu wyodrębnienia najbardziej znaczących sekwencji genowych z mikromacierzy ekspresji genów dotyczącej autyzmu. Dla wyselekcjonowanych cech przeanalizowano wartości poziomów ekspresji genów. W kolejnym etapie dokonano fuzji wyselekcjonowanych cech. Optymalny zbiór cech wyznaczono na podstawie czystości przestrzeni klasteryzacji.
Czasopismo
Rocznik
Tom
Strony
199-204
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
- Military University of Technology, tlatkowski@wat.edu.pl
autor
- Warsaw University of Technology, Military University of Technology, sto@iem.pw.edu.pl
Bibliografia
- [1] Alter M., Kharkar R. Ramsey K., Craig D., Melmed R., Grebe T., Curtis-Bay R., Ober-reynolds S., Kirwan J., Jones J., Blake- Turner J., Hen R., Stephan D., Autism and increased patternal age related changes in global levels of gene expression regulation, Plos One, 2011, vol. 6, pp. 1-10.
- [2] Baldi P., Long A.D., A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inference of gene changes, Bioinformatics, 2001, vol. 17, pp. 509-519.
- [3] Fan R.E., Chen P.H., Lin C.J., Working set selection using second order information for training SVM, Journal of Machine Learning Research, ., 2005, vol. 6, pp.1889-1918.
- [4] De Rinaldis E., DNA microarrays: current applications, Horizon Scientific Press, Norfolk, 2007.
- [5] Duda R.O., Hart P.E., Stork P., Pattern Classification and Scene Analysis, Wiley, New York. 2003.
- [6] Eisen M., Spellman P., Brown P., Cluster analysis and display of genome wide expression patterns, Proc. Natl. Acad. USA, 1998, vol. 95, pp. 14863-14868.
- [7] Golub T. et al., Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, Science, 1999, vol. 286, pp. 531-537.
- [8] Guyon I., Weston A.J., Barnhill S., Vapnik V., Gene selection for cancer classification using SVM, Machine Learning, 2002, , vol. 46, pp. 389-422.
- [9] Guyon I., Elisseeff A., An introduction to variable and feature selection, Journal of Machine Learning Research, 2003, vol. 3, pp. 1158 – 1182.
- [10] Hewett R., Kijsanayothin P., Tumor classification ranking from microarray data, BMC Genomics, 2008, vol. 9(2), pp. 1-11.
- [11] Huang X., Pan W., Linear regression and two-class classification with gene expression data, Bioinformatics, 2003, vol. 19, pp. 2072-2078.
- [12] Matlab user manual – Statistics toolbox, MathWorks, Natick, USA, 2012.
- [13] Mitsubayashi H., Aso S., Nagashima T., Okada Y., Accurate and robust gene selection for disease classification using a simple statistics, Biomedical Informatics, 2008, v. 391, 68-71.
- [14] Osowski S, Methods and tools in data mining (in Polish), BTC, Warsaw, 2013.
- [15] Robnik-Sikonja R, Kononenko I., Theoretical and empirical analysis of ReliefF and RReliefF, Machine Learning, 2003, vol. 53, pp. 23-69.
- [16] Sprent P., Smeeton N.C., Applied Nonparametric Statistical Methods, Boca Raton: Chapman & Hall/CRC, 2007.
- [17] Tan P. N., Steinbach M., Kumar V., Introduction to data mining, Pearson Education Inc., Boston, 2006.
- [18] Wang X., Gotoh O., Cancer classification using single genes, Genom Informatics, 2009, vol. 23 (1): pp. 179-188..
- [19] Wang X., Gotoh O., A Robust Gene Selection Method for Microarray-based Cancer Classification, Cancer Informatics, 2010, vol. 9, pp. 15-30.
- [20] Wiliński A., Osowski S., Ensemble of data mining methods for gene ranking, Bulletin of the Polish Academy of Sciences, 2012. vol. 60, pp. 461-471.
- [21] Woolf P. J., Wang Y., A fuzzy logic approach to analyzing gene expression data, Physiological Genomics, 2000, v. 3, pp. 9-15.
- [22] Yang F., Robust feature selection for microarray data based on multicriterion fusion, IEEE Trans. Computational Biology and Bioinformatics, 2011, vol. 8(4), pp. 1080-1092.
- [23] http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS4431
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c783fbdc-3e7b-4f07-b4c4-89da21f7e4ff