Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 34, no. 4 | 453--460
Tytuł artykułu

Comparative pharmacokinetic study of bicalutamide administration alone and in combination with vitamin D in rats

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bicalutamide (BCL) has been approved for treatment of advanced prostate cancer (Pca), and vitamin D is inevitably used in combination with BCL in Pca patients for skeletal or anti-tumor strategies. Therefore, it is necessary to study the effect of vitamin D application on the pharmacokinetics of BCL. We developed and validated a specific, sensitive and rapid UHPLC–MS/MS method to investigate the pharmacokinetic behaviours of BCL in rat plasma with and without the combined use of vitamin D. Plasma samples were extracted by protein precipitation with ether/dichloromethane (2:1 v/v), and the analytes were separated by a Kinetex Biphenyl 100A column (2.1 × 100 mm, 2.6 μm) with a mobile phase composed of 0.5 mM ammonium acetate (PH 6.5) in water (A) and acetonitrile (B) in a ratio of A:B = 35:65 (v/v). Analysis of the ions was run in the multiple reactions monitoring (MRM) mode. The linear range of BCL was 5–2000 ng mL⁻¹. The intra- and inter-day precision were less than 14%, and the accuracy was in the range of 94.4–107.1%. The mean extraction recoveries, matrix effects and stabilities were acceptable for this method. The validated method was successfully applied to evaluate the pharmacokinetic behaviours of BCL in rat plasma. The results demonstrated that the pharmacokinetic property of BCL is significantly affected by combined use of vitamin D, which might help provide useful evidence for the clinical therapy and further pharmacokinetic study.
Wydawca

Rocznik
Strony
453--460
Opis fizyczny
Bibliogr. 50 poz., tab., wykr.
Twórcy
autor
  • Pharmaceutical Department, Hebei General Hospital, Shijiazhuang, China, kathy2587@163.com
autor
  • Pharmaceutical Department, Hebei General Hospital, Shijiazhuang, China, dihaixiao@126.com
autor
  • Department of Molecular and Cellular Physiology, Shinshu University, Matsumoto, Japan, pangb3@yahoo.com
autor
autor
  • Pharmaceutical Department, Hebei General Hospital, Shijiazhuang, China, lhtyl16@126.com
autor
  • Pharmaceutical Department, Hebei General Hospital, Shijiazhuang, China, qiubo47@126.com
autor
autor
Bibliografia
  • 1. Shahinian, V.B.; Kuo, Y.F.; Freeman, J.L.; Orihuela, E.; Goodwin, J.S. Characteristics of urologists predict the use of androgen deprivation therapy for prostate cancer. J. Clin. Oncol. 2007, 25(34), 5359–65.
  • 2. Singer, E.A.; Golijanin, D.J.; Miyamoto, H.; Messing, E.M. Androgen deprivation therapy for prostate cancer. Expert Opin. Pharmacother. 2008, 9(2), 211–28.
  • 3. Blas, L.; Onozawa, M.; Shiota, M.; Hinotsu, S.; Sakamoto, S.; Kitagawa, Y.; Kawai, T.; Eto, M.; Kume, H.; Akaza, H. Long-term outcomes of androgen deprivation therapy in prostate cancer among Japanese men over 80 years old. Cancer Sci. 2021, 112(8), 3074–82.
  • 4. Furr, B.J. The development of Casodex (bicalutamide): preclinical studies. Eur. Urol. 1996, 29(Suppl 2), 83–95.
  • 5. Wellington, K.; Keam, S. Bicalutamide 150mg: a review of its use in the treatment of locally advanced prostate cancer. Drugs 2006, 66(6), 837–50.
  • 6. Osguthorpe, D.J.; Hagler, A.T. Mechanism of androgen receptor antagonism by bicalutamide in the treatment of prostate cancer. Biochemistry-Us 2011, 50(19), 4105–13.
  • 7. Kolvenbag, G.J.; Blackledge, G.R.; Gotting-Smith, K. Bicalutamide (Casodex) in the treatment of prostate cancer: history of clinical development. Prostate 1998, 34(1), 61–72.
  • 8. Saylor, P.J.; Lee, R.J.; Smith, M.R. Emerging therapies to prevent skeletal morbidity in men with prostate cancer. J. Clin. Oncol. 2011, 29(27), 3705–14.
  • 9. Israeli, R.S.; Ryan, C.W.; Jung, L.L. Managing bone loss in men with locally advanced prostate cancer receiving androgen deprivation therapy. J. Urol. 2008, 179(2), 414–23.
  • 10. Diamond, T.H.; Bucci, J.; Kersley, J.H.; Aslan, P.; Lynch, W.B.; Bryant, C. Osteoporosis and spinal fractures in men with prostate cancer: risk factors and effects of androgen deprivation therapy. J. Urol. 2004, 172(2), 529–32.
  • 11. Smith, M.R. Osteoporosis during androgen deprivation therapy for prostate cancer. Urology 2002, 60(3 Suppl 1), 79–85, 86.
  • 12. Khriguian, J.; Tsui, J.; Vaughan, R.; Kucharczyk, M. J.; Nabid, A.; Bettahar, R.; Vincent, L.; Martin, A. G.; Jolicoeur, M.; Yassa, M.; Barkati, M.; Igidbashian, L.; Bahoric, B.; Archambault, R.; Villeneuve, H.; Mohiuddin, M.; Niazi, T. The clinical significance of bone mineral density changes following Long-Term androgen deprivation therapy in localized prostate cancer patients. J. Urol. 2021, 205(6), 1648–54.
  • 13. Smith, M.R. Diagnosis and management of treatment-related osteoporosis in men with prostate carcinoma. Cancer-am Cancer Soc. 2003, 97(3 Suppl), 789–95.
  • 14. Bouillon, R.; Carmeliet, G.; Verlinden, L.; van Etten, E.; Verstuyf, A.; Luderer, H. F.; Lieben, L.; Mathieu, C.; Demay, M. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr. Rev. 2008, 29(6), 726–76.
  • 15. Dusso, A.S.; Brown, A.J.; Slatopolsky, E. Vitamin d. Am. J. Physiol. Ren. Physiol 2005, 289(1), F8–28.
  • 16. Deluca, H.F. History of the discovery of vitamin D and its active metabolites. Bonekey Rep. 2014, 3, 479.
  • 17. Reich, K.M.; Fedorak, R.N.; Madsen, K.; Kroeker, K.I. Vitamin D improves inflammatory bowel disease outcomes: basic science and clinical review. World J. Gastroenterol. 2014, 20(17), 4934–47.
  • 18. Takiishi, T.; Gysemans, C.; Bouillon, R.; Mathieu, C. Vitamin D and diabetes. Endocrinol. Metab. Clin. North Am. 2010, 39(2), 419–46.
  • 19. Bikle, D.D. Vitamin D metabolism and function in the skin. Mol. Cell Endocrinol 2011, 347(1-2), 80–9.
  • 20. von Essen, M.R.; Kongsbak, M.; Schjerling, P.; Olgaard, K.; Odum, N.; Geisler, C. Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nat. Immunol. 2010, 11(4), 344–9.
  • 21. Gascon-Barre, M.; Demers, C.; Mirshahi, A.; Neron, S.; Zalzal, S.; Nanci, A. The normal liver harbors the vitamin D nuclear receptor in nonparenchymal and biliary epithelial cells. Hepatology 2003, 37(5), 1034–42.
  • 22. Zarei, A.; Morovat, A.; Javaid, K.; Brown, C.P. Vitamin D receptor expression in human bone tissue and dose-dependent activation in resorbing osteoclasts. Bone Res. 2016, 4, 16030.
  • 23. Wang, Y.; Deb, D. K.; Zhang, Z.; Sun, T.; Liu, W.; Yoon, D.; Kong, J.; Chen, Y.; Chang, A.; Li, Y. C. Vitamin D receptor signaling in podocytes protects against diabetic nephropathy. J. Am. Soc. Nephrol. 2012, 23(12), 1977–86.
  • 24. Tague, S.E.; Clarke, G.L.; Winter, M.K.; McCarson, K.E.; Wright, D.E.; Smith, P.G. Vitamin D deficiency promotes skeletal muscle hypersensitivity and sensory hyperinnervation. J. Neurosci. 2011, 31(39), 13728–38.
  • 25. Verone-Boyle, A. R.; Shoemaker, S.; Attwood, K.; Morrison, C. D.; Makowski, A. J.; Battaglia, S.; Hershberger, P. A. Diet-derived 25-hydroxyvitamin D3 activates vitamin D receptor target gene expression and suppresses EGFR mutant non-small cell lung cancer growth in vitro and in vivo. Oncotarget 2016, 7(1), 995–1013.
  • 26. Li, Q.; Gao, Y.; Jia, Z.; Mishra, L.; Guo, K.; Li, Z.; Le, X.; Wei, D.; Huang, S.; Xie, K. Dysregulated Kruppel-like factor 4 and vitamin D receptor signaling contribute to progression of hepatocellular carcinoma. Gastroenterology 2012, 143(3), 799–810.
  • 27. Jacobs, E. T.; Van Pelt, C.; Forster, R. E.; Zaidi, W.; Hibler, E. A.; Galligan, M. A.; Haussler, M. R.; Jurutka, P. W. CYP24A1 and CYP27B1 polymorphisms modulate vitamin D metabolism in colon cancer cells. Cancer Res. 2013, 73(8), 2563–73.
  • 28. McCullough, M.L.; Bostick, R.M.; Mayo, T.L. Vitamin D gene pathway polymorphisms and risk of colorectal, breast, and prostate cancer. Annu. Rev. Nutr. 2009, 29, 111–32.
  • 29. Zheng, W.; Duan, B.; Zhang, Q.; Ouyang, L.; Peng, W.; Qian, F.; Wang, Y.; Huang, S. Vitamin D-induced vitamin D receptor expression induces tamoxifen sensitivity in MCF-7 stem cells via suppression of Wnt/beta-catenin signaling. Biosci. Rep. 2018, 38(6).
  • 30. Hendrickson, W. K.; Flavin, R.; Kasperzyk, J. L.; Fiorentino, M.; Fang, F.; Lis, R.; Fiore, C.; Penney, K. L.; Ma, J.; Kantoff, P. W.; Stampfer, M. J.; Loda, M.; Mucci, L. A.; Giovannucci, E. Vitamin D receptor protein expression in tumor tissue and prostate cancer progression. J. Clin. Oncol. 2011, 29(17), 2378–85.
  • 31. Li, H.; Stampfer, M. J.; Hollis, J. B.; Mucci, L. A.; Gaziano, J. M.; Hunter, D.; Giovannucci, E. L.; Ma, J. A prospective study of plasma vitamin D metabolites, vitamin D receptor polymorphisms, and prostate cancer. Plos Med. 2007, 4(3), e103.
  • 32. Carlberg, C.; Munoz, A. An update on vitamin D signaling and cancer. Semin. Cancer Biol. 2020.
  • 33. Lou, Y.R.; Nazarova, N.; Talonpoika, R.; Tuohimaa, P. 5Alpha-dihydrotestosterone inhibits 1alpha,25-dihydroxyvitamin D3-induced expression of CYP24 in human prostate cancer cells. Prostate 2005, 63(3), 222–30.
  • 34. Feldman, D.; Krishnan, A.V.; Swami, S.; Giovannucci, E.; Feldman, B.J. The role of vitamin D in reducing cancer risk and progression. Nat. Rev. Cancer 2014, 14(5), 342–57.
  • 35. Bao, B.Y.; Hu, Y.C.; Ting, H.J.; Lee, Y.F. Androgen signaling is required for the vitamin D-mediated growth inhibition in human prostate cancer cells. Oncogene 2004, 23(19), 3350–60.
  • 36. Carlberg, C.; Velleuer, E. Vitamin D and the risk for cancer: a molecular analysis. Biochem. Pharmacol. 2021, 114735.
  • 37. Schenk, J. M.; Till, C. A.; Tangen, C. M.; Goodman, P. J.; Song, X.; Torkko, K. C.; Kristal, A. R.; Peters, U.; Neuhouser, M. L. Serum 25-hydroxyvitamin D concentrations and risk of prostate cancer: results from the prostate cancer prevention trial. Cancer Epidemiol. Biomarkers Prev. 2014, 23(8), 1484–93.
  • 38. Manson, J. E.; Cook, N. R.; Lee, I. M.; Christen, W.; Bassuk, S. S.; Mora, S.; Gibson, H.; Gordon, D.; Copeland, T.; D’Agostino, D.; Friedenberg, G.; Ridge, C.; Bubes, V.; Giovannucci, E. L.; Willett, W. C.; Buring, J. E. Vitamin d supplements and prevention of cancer and cardiovascular disease. N. Engl. J. Med. 2019, 380(1), 33–44.
  • 39. Manson, J.E.; Bassuk, S.S.; Buring, J.E. Vitamin d, calcium, and cancer: approaching daylight? JAMA 2017, 317(12), 1217–8.
  • 40. Keum, N.; Lee, D.H.; Greenwood, D.C.; Manson, J.E.; Giovannucci, E. Vitamin D supplementation and total cancer incidence and mortality: a meta-analysis of randomized controlled trials. Ann. Oncol. 2019, 30(5), 733–43.
  • 41. Wu, X.; Hu, W.; Lu, L.; Zhao, Y.; Zhou, Y.; Xiao, Z.; Zhang, L.; Zhang, H.; Li, X.; Li, W.; Wang, S.; Cho, C. H.; Shen, J.; Li, M. Repurposing vitamin D for treatment of human malignancies via targeting tumor microenvironment. Acta Pharm. Sin B 2019, 9(2), 203–19.
  • 42. P, S.S.; Vijay, K.S.; Kumar, A.; Mullangi, R. Development of an LC-MS/MS method for determination of bicalutamide on dried blood spots: application to pharmacokinetic study in mice. Biomed. Chromatogr. 2015, 29(2), 254–60.
  • 43. Cockshott, I.D. Bicalutamide: clinical pharmacokinetics and metabolism. Clin. Pharmacokinet. 2004, 43(13), 855–78.
  • 44. Cockshott, I.D.; Plummer, G.F.; Cooper, K.J.; Warwick, M.J. The pharmacokinetics of Casodex in laboratory animals. Xenobiotica 1991, 21(10), 1347–55.
  • 45. Qin, X.; Wang, X. Role of vitamin D receptor in the regulation of CYP3A gene expression. Acta Pharm. Sin B 2019, 9(6), 1087–98.
  • 46. Wang, Z.; Schuetz, E.G.; Xu, Y.; Thummel, K.E. Interplay between vitamin D and the drug metabolizing enzyme CYP3A4. J. Steroid Biochem. Mol. Biol. 2013, 136, 54–8.
  • 47. Maguire, O.; Pollock, C.; Martin, P.; Owen, A.; Smyth, T.; Doherty, D.; Campbell, M. J.; McClean, S.; Thompson, P. Regulation of CYP3A4 and CYP3A5 expression and modulation of “intracrine” metabolism of androgens in prostate cells by liganded vitamin D receptor. Mol. Cell Endocrinol 2012, 364(1-2), 54–64.
  • 48. Chae, Y.J.; Kim, M.S.; Chung, S.J.; Lee, M.K.; Lee, K.R.; Maeng, H.J. Pharmacokinetic estimation models-based approach to predict clinical implications for CYP induction by calcitriol in human cryopreserved hepatocytes and HepaRG cells. Pharmaceutics 2021, 13(2).
  • 49. Aiba, T.; Susa, M.; Fukumori, S.; Hashimoto, Y. The effects of culture conditions on CYP3A4 and MDR1 mRNA induction by 1alpha,25-dihydroxyvitamin D(3) in human intestinal cell lines, Caco-2 and LS180. Drug Metab. Pharmacokinet. 2005, 20(4), 268–74.
  • 50. Grant, D. J.; Manichaikul, A.; Alberg, A. J.; Bandera, E. V.; Barnholtz-Sloan, J.; Bondy, M.; Cote, M. L.; Funkhouser, E.; Moorman, P. G.; Peres, L. C.; Peters, E. S.; Schwartz, A. G.; Terry, P. D.; Wang, X. Q.; Keku, T. O.; Hoyo, C.; Berchuck, A.; Sandler, D. P.; Taylor, J. A.; O’Brien, K. M.; Velez, E. D.; Edwards, T. L.; Beeghly-Fadiel, A.; Wentzensen, N.; Pearce, C. L.; Wu, A. H.; Whittemore, A. S.; McGuire, V.; Sieh, W.; Rothstein, J. H.; Modugno, F.; Ness, R.; Moysich, K.; Rossing, M. A.; Doherty, J. A.; Sellers, T. A.; Permuth-Way, J. B.; Monteiro, A. N.; Levine, D. A.; Setiawan, V. W.; Haiman, C. A.; LeMarchand, L.; Wilkens, L. R.; Karlan, B. Y.; Menon, U.; Ramus, S.; Gayther, S.; Gentry-Maharaj, A.; Terry, K. L.; Cramer, D. W.; Goode, E. L.; Larson, M. C.; Kaufmann, S. H.; Cannioto, R.; Odunsi, K.; Etter, J. L.; Huang, R. Y.; Bernardini, M. Q.; Tone, A. A.; May, T.; Goodman, M. T.; Thompson, P. J.; Carney, M. E.; Tworoger, S. S.; Poole, E. M.; Lambrechts, D.; Vergote, I.; Vanderstichele, A.; Van Nieuwenhuysen, E.; Anton-Culver, H.; Ziogas, A.; Brenton, J. D.; Bjorge, L.; Salvensen, H. B.; Kiemeney, L. A.; Massuger, L.; Pejovic, T.; Bruegl, A.; Moffitt, M.; Cook, L.; Le, N. D.; Brooks-Wilson, A.; Kelemen, L. E.; Pharoah, P.; Song, H.; Campbell, I.; Eccles, D.; DeFazio, A.; Kennedy, C. J.; Schildkraut, J. M. Evaluation of vitamin D biosynthesis and pathway target genes reveals UGT2A1/2 and EGFR polymorphisms associated with epithelial ovarian cancer in African American Women. Cancer Med. 2019, 8(5), 2503–13.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c77ce2fa-2cca-43b9-9ded-b9068d34571c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.