Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, no. 2 | art. no. e137, 2023
Tytuł artykułu

Parameter optimization and compressive property of the TC31 titanium alloy X‑type lattice structure by the superplastic forming/diffusion bonding process

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The superplastic forming and diffusion bonding (SPF/DB) process was investigated for the manufacture of the TC31 titanium alloy X-type lattice structure. The finite element (FE) model was used to simulate the SPF process and compression behavior of the X-type lattice structure, and the deformation and compression failure modes were analyzed. A theoretical model was revised to predict the structural compressive strength. The results showed that the material processed by heat treatment still had great plasticity with the maximum elongation of 142.5% at 920 °C. The bonding rate, thinning rate and shear strength of the TC31 alloy joint bonded at 920 °C/3 MPa/60 min were 97.1%, 5.56% and 364 MPa, respectively, which indicated it was suitable for the X-type lattice truss structure to formed in the process parameter. Based on the result of the fundamental test and FE simulation, the X-type lattice structure could be fabricated by DB at 920 °C/3 MPa/60 min and SPF at 920 °C with a target strain rate of 0.001 s-1. Thickness measurements indicated that the area with a maximum thinning rate of 32.9% was located at the transition filet between the bonding areas and the ribs. The surface compressive strength of the X-type lattice structure was 1.51 MPa with a relative density of 0.015 when rib width was 5 mm, and the rib plastic buckling was considered as the failure mode of the TC31 titanium alloy lattice structure formed by SPF/DB. The surface compressive strength of the simulation results is 1.59 MPa with an error of 5.3%. The decrease of material properties and rib local thinning affect the accuracy of the theoretical predictions, and the revised theoretical result is 1.52 MPa with an error of 0.7%.
Wydawca

Rocznik
Strony
art. no. e137, 2023
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
  • State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
autor
  • State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China, meemhchen@nuaa.edu.cn
autor
  • State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518000, China
autor
  • State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Bibliografia
  • 1. Burkhart ET, Hefti L. Advancements of superplastic forming and diffusion bonding of titanium alloys for heat critical aerospace applications. SAE Int J Advances Curr Prac in Mobility. 2020;2(3):1202-8. https://doi.org/10.4271/2020-01-0033.
  • 2. Queheillalt DT, Wadley HNG. Titanium alloy lattice truss structures. Mater Des. 2009;30(6):1966-75. https://doi.org/10.1016/j.matdes.2008.09.015.
  • 3. Zhao Z, Hou J, Fu Y. Measurement-based modal analysis and stability prediction on turn-milling of hollow turbine blade. Shock Vib. 2020;1:1-9. https://doi.org/10.1155/2020/8861373.
  • 4. Li ZQ, Guo HP. Application progress and development trend of superplastic forming/diffusion bonding technology. Aero manuf technol. 2010;8:32-5. https://doi.org/10.3969/j.issn.1671-833X.2010.08.003.
  • 5. Zheng T, Yan H, Li S, et al. Compressive behavior and failure modes of the wood-based double X-type lattice sandwich structure. J Build Eng. 2020;30:101176. https://doi.org/10.1016/j.jobe.2020.101176.
  • 6. Huang YJ, Xue YY, Wang XF, et al. Mechanical behavior of three-dimensional pyramidal aluminum lattice materials. Mater Sci Eng A. 2017;696:520-8. https://doi.org/10.1016/j.msea.2017.04.053.
  • 7. Zhang Q, Jiang WC, Zhao B, et al. A study of the effective elastic modulus of a lattice truss panel structure by experimental and theoretical analysis. Comp Struct. 2017;165:130-7. https://doi.org/10.1016/j.compstruct.2017.01.012.
  • 8. Zhang QC, Han YJ, Chen CQ, et al. Ultralight X-type lattice sandwich structure (I): concept, fabrication and experimental characterization. Sci China Ser E. 2009;52(8):2147-54. https://doi.org/10.1007/s11431-009-0219-9.
  • 9. Jiang W, Chen H, Gong JM, et al. Numerical modelling and nanoindentation experiment to study the brazed residual stresses in an X-type lattice truss sandwich structure. Mater Sci Eng A. 2011;528(13-14):4715-22. https://doi.org/10.1016/j.msea.2011.02.073.
  • 10. Wang B, Hu J, Li Y, et al. Mechanical properties and failure behavior of the sandwich structures with carbon fiber-reinforced X-type lattice truss core. Comp Struct. 2018;185:619-33. https://doi.org/10.1016/j.compstruct.2017.11.066.
  • 11. Wadley HNG. Multifunctional periodic cellular metals. Philos T R Soc A. 1838;2006(364):31-68. https://doi.org/10.1098/rsta.2005.1697.
  • 12. Gregory WK, Vikram SD, Haydn NGW. Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium. Acta Mater. 2004;52(14):4229-37. https://doi.org/10.1016/j.actamat.2004.05.039.
  • 13. Liu ZB, Chen HT, Xing SQ. Mechanical performances of metal-polymer sandwich structures with 3D-printed lattice cores subjected to bending load. Arch Civ Mech Eng. 2020;20(3):89. https://doi.org/10.1007/s43452-020-00095-1.
  • 14. Li X, Wang GF, Zhang JX, et al. Electrically assisted superplastic forming/diffusion bonding of the Ti2AlNb alloy sheet. Int J Adv Manuf Technol. 2020;106(1-2):77-89. https://doi.org/10.1007/s00170-019-04458-8.
  • 15. Du ZH, Wang CX, Liu Q, et al. The superplastic forming/diffusion bonding of TA7 titanium alloy for manufacturing hollow structure with stiffeners. J Manuf Process. 2022;73:385-94. https://doi.org/10.1016/j.jmapro.2021.10.064.
  • 16. Langdon TG. Forty-five years of superplastic research: recent developments and future prospects. Mater Sci Forum. 2016;838-839:3-12. https://doi.org/10.4028/www.scientific.net/MSF.838-839.3.
  • 17. Wu Y, Wu D, Ma J, et al. A physically based constitutive model of Ti-6Al-4 V and application in the SPF/DB process for a pyramid lattice sandwich panel. Arch Civ Mech Eng. 2021. https://doi.org/10.1007/S43452-021-00260-0.
  • 18. Tan ZL, Bai LS, Bai BZ, et al. Fabrication of lattice truss structures by novel super-plastic forming and diffusion bonding process in a titanium alloy. Mater Des. 2016;92:724-30. https://doi.org/10.1016/j.matdes.2015.12.100.
  • 19. Li ZQ, Zhao B, Shao J, et al. Deformation behavior and mechanical properties of periodic topological Ti structures fabricated by superplastic forming/diffusion bonding. Int J Lightw Mater Manuf. 2019;2(1):1-30. https://doi.org/10.1016/j.ijlmm.2018.11.001.
  • 20. Zhang T, Sha Hp, Li L, et al. Study of macroscopic defects of four-layer structure of Ti-6Al-4V during superplastic forming/diffusion bonding. Int J Precis Eng Manuf. 2021;22(1):27-39. https://doi.org/10.1007/s12541-020-00432-7.
  • 21. Chang-Wen W, Tao Z, Guofeng W, et al. Superplastic forming and diffusion bonding of Ti-22Al-24Nb alloy. J Mater Process Tech. 2015;222:122-7. https://doi.org/10.1016/j.jmatprotec.2015.03.005.
  • 22. Du ZH, Jiang SS, Zhang KF, et al. The structural design and superplastic forming/diffusion bonding of Ti2AlNb based alloy for four-layer structure. Mater Des. 2016;104:242-50. https://doi. org/10.1016/j.matdes.2016.05.046.
  • 23. Cheng J, Lee S. Methods for resolving grooving problems in parts manufactured from combined diffusion bonding and superplastic forming processes. J Mater Process Technol. 1994;45(1-4):249-54. https://doi.org/10.1016/0924-0136(94)90348-4.
  • 24. Li BY, Zhang JT, Zhang KF, et al. Research on control method of surface groove of titanium alloy SPF/DB Four-sheet structure. Aero Manuf Technol. 2020;63(21):63-7.
  • 25. Wu DP, Wu Y, Chen MH, et al. Research on high temperature flow behavior and microstructure evolution of TC31 titanium alloy sheets. Rare Met Mater Eng. 2019;48(12):3901-10.
  • 26. Peng Y, Li JL, Li ZX, et al. Interfacial voids and microstructure evolution, bonding behavior and deformation mechanism of TC4 diffusion bonded joints. J Manuf Process. 2022;81:837-51. https://doi.org/10.1016/J.JMAPRO.2022.07.037.
  • 27. Wu HP, Li XF, Mei QF, et al. Flow behavior of diffusion bonding interface of Ti6Al4V alloy over a wide range of strain rates. Mater Sci Eng A. 2019;761:138067. https://doi.org/10.1016/j.msea.2019.138067.
  • 28. Chen HL, Zheng Q, Zhao L, et al. Mechanical property of lattice truss material in sandwich panel including strut flexural deformation. Compos Struct. 2012;94(12):3448-56. https://doi.org/10.1016/j.compstruct.2012.06.004.
  • 29. Yin Q, Soyarslan C, Guner A, et al. A cyclic twin bridge shear test for the identification of kinematic hardening parameters. Int J Mech Sci. 2012;59(1):31-43. https://doi.org/10.1016/j.ijmecsci.2012.02.008.
  • 30. Pamela A. Finite element analysis and validation of the superplastic forming of multi-sheet structures. Mater Sci Forum. 2016;4248(838-839):621-6. https://doi.org/10.4028/www.scientific.net/MSF.838-839.621.
  • 31. Liu ZQ, Wang XS, Jiao XY, et al. Prediction of microstructure evolution during hot gas forming of Ti 2 AlNb-based alloy tubular component with square cross-section. Procedia Manuf. 2018;15:1156-63. https://doi.org/10.1016/j.promfg.2018.07.374.
  • 32. K. C, C. S S, B. B S, et al. Superplastic forming with diffusion bonding of titanium alloys. Mater Today 2020;27(3):2909-13. https://doi.org/10.1016/j.matpr.2020.03.514
  • 33. Xiong J, Ma L, Vaziri A, et al. Mechanical behavior of carbon fiber composite lattice core sandwich panels fabricated by laser cutting. Acta Mater. 2012;60(13-14):5322-34. https://doi.org/10.1016/j.actamat.2012.06.004.
  • 34. Wang XX, Wang WQ, Ma HM. Microstructure and mechanical properties of high temperature and high strength BTi-6431S alloy at 700 °C. Chin J Nonferr Met. 2010;20:792-5.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c7512b08-0084-4605-aeb5-f90a4c0a2e38
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.