Czasopismo
2016
|
R. 92, nr 3
|
182--189
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Dodatnie minimalnofazowe obwody elektryczne
Języki publikacji
Abstrakty
Minimal-phase positive continuous-time linear electrical circuits are addressed. It is shown that positive asymptotically stable electrical circuits with distinct poles and zeros are minimal-phase systems. Conditions are established for electrical circuits to be minimal-phase systems. Sufficient conditions for cancelation of zeros and poles of minimal-phase electrical circuits are proposed.
W pracy są analizowane dodatnie minimalnofazowe obwody elektryczne opisane równaniami stanu i macierzami transmitancji operatorowych. Wykazano, że dodatnie stabilne asymptotycznie obwody elektryczne z różnymi zerami i biegunami są obwodami minimalnofazowymi. Podano warunki minimalnofazowości obwodów elektrycznych, oraz warunki wystarczające upraszczania zer i biegunów w obwodach elektrycznych. Rozważania ogólne zilustrowano przykładami obwodów elektrycznych.
Czasopismo
Rocznik
Tom
Strony
182--189
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
- Politechnika Białostocka, Wydział Elektryczny, ul. Wiejska 45D, 15-351 Białystok, kaczorek@isep.pw.edu.pl
Bibliografia
- [1] Kaczorek T., A class of positive and stable time-varying electrical circuits. Electrical Review, vol. 91, no. 5, (2015), 121-124.
- [2] Kaczorek T., Constructability and observability of standard and positive electrical circuits. Electrical Review, vol. 89, no. 7, (2013), 132-136.
- [3] Kaczorek T., Rogowski K., Fractional Linear Systems and Electrical Circuits. Studies in Systems, Decision and Control, vol. 13, Springer,(2015).
- [4] Kaczorek T., Positive electrical circuits and their reachability. Archives of Electrical Engineering, vol. 60, no. 3, (2011), 283-301.
- [5] Kaczorek T., Positive fractional linear electrical circuits. Proceedings of SPIE, vol. 8903, Bellingham WA, USA, Art. No 3903-35.
- [6] Kaczorek T., Positive unstable electrical circuits. Electrical Review, vol. 88, no. 5a, (2012), 187-192.
- [7] Kaczorek T., Zeroing of state variables in descriptor electrical circuits by state-feedbacks. Electrical Review, vol. 89, no. 10, (2013), 200-203.
- [8] Kaczorek T., Normal positive electrical circuits. IET Circuits Theory and Applications, vol. 9, no. 5, (2015), 691-699.
- [9] Kaczorek T., Minimum energy control of positive electrical circuits. Proc. of Conf. MMAR, Miedzyzdroje, Aug. 2-5, (2014), 2-9.
- [10] Kaczorek T., Positive linear systems with different fractional orders. Bull. Pol. Acad. Sci. Techn., vol. 58, no. 3, (2010), 453-458.
- [11] Kaczorek T., Positive systems consisting of n subsystems with different fractional orders. IEEE Trans. Circuits and Systems – regular paper, vol. 58, no. 6, June (2011), 1203-1210.
- [12] Kaczorek T., Decoupling zeros of positive continuous-time linear systems and electrical circuits. Advances in Systems Science. Advances in Intelligent Systems and Computing, vol. 240, (2014), Springer, 1-15.
- [13] L., Farina L., A tutorial on the positive realization problem. IEEE Trans. on Automatic Control, vol. 49, no. 5, (2004), 651-664.
- [14] Farina L., Rinaldi S., Positive Linear Systems; Theory and Applications. J. Wiley, New York, (2000).
- [15] Kaczorek T., Linear Control Systems, vol. 1. Research Studies Press, J. Wiley, New York, (1992).
- [16] Kaczorek T., Sajewski Ł., The Realization Problem for Positive and Fractional Systems, Springer, Heidelberg, (2014).
- [17] Shaked U., Dixon M., Generalized minimal realization of transfer-function matrices. Int. J. Contr., vol. 25, no. 5, (1977), 785-803.
- [18] Kaczorek T., Positive 1D and 2D Systems. Springer-Verlag, London, (2002).
- [19] Kaczorek T., A realization problem for positive continuoustime linear systems with reduced numbers of delays. Int. J. Appl. Math. Comput. Sci., vol. 16, no. 3, (2006), 325-331.
- [20] Kaczorek T., Computation of positive stable realizations for discrete-time linear systems. Computational Problems of Electrical Engineering, vol. 2, no. 1, (2012), 41-48.
- [21] Kaczorek T., Computation of positive stable realizations for linear continuous-time systems. Bull. Pol. Acad. Techn. Sci., vol. 59, no. 3, (2011), 273-281.
- [22] Kaczorek T., Computation of realizations of discrete-time cone systems. Bull. Pol. Acad. Sci. Techn., vol. 54, no. 3, (2006), 347-350.
- [23] Kaczorek T., Positive and asymptotically stable realizations for descriptor discrete-time linear systems. Bull. Pol. Acad. Sci. Techn., vol. 61, no. 1, (2013), 229-237.
- [24] Kaczorek T., Positive minimal realizations for singular discrete-time systems with delays in state and delays in control. Bull. Pol. Acad. Sci. Techn., vol. 53, no. 3, (2005), 293-298.
- [25] Kaczorek T., Positive stable realizations of discrete-time linear systems. Bull. Pol. Acad. Sci. Techn., vol. 60, no. 3, (2012), 605-616.
- [26] Kaczorek T., Positive stable realizations with system Metzler matrices. Archives of Control Sciences, vol. 21, no. 2, (2011), 167-188.
- [27] Kaczorek T., Realization problem for positive multivariable discrete-time linear systems with delays in the state vector and inputs. Int. J. Appl. Math. Comput. Sci., vol. 16, no. 2, (2006), 101-106.
- [28] Kaczorek T., Determination of positive realizations with reduced numbers of delays or without delays for discrete-time linear systems. Archives of Control Sciences, vol. 22, no. 4, (2012), 371-384.
- [29] Kaczorek T., Positive realizations with reduced numbers of delays for 2-D continuous-discrete linear systems. Bull. Pol. Acad. Sci. Techn., vol. 60, no. 4, (2012), 835-840.
- [30] Kaczorek T., Positive stable realizations for fractional descriptor continuous-time linear systems. Archives of Control Sciences, vol. 22, no. 3, (2012), 255-265.
- [31] Kaczorek T., Positive stable realizations of fractional continuous-time linear systems. Int. J. Appl. Math. Comput. Sci., vol. 21, no. 4, (2011), 697-702.
- [32] Kaczorek T., Realization problem for fractional continuoustime systems. Archives of Control Sciences, vol. 18, no. 1, (2008), 43-58.
- [33] Sajewski Ł., Positive stable minimal realization of fractional discrete-time linear systems, Advances in the Theory and Applications of Non-integer Order Systems Eds. W. Mitkowski et al., Springer, 257, (2013), 15-30.
- [34] Sajewski Ł., Positive stable realization of fractional discrete-time linear systems, Asian Journal of Control, 16 (3), DOI: 10.1002/asjc.750, (2014).
- [35] Sajewski Ł., Positive realization of fractional continuoustime linear systems with delays, Measurement Automation and Monitoring, 58 (5) , (2012), 413-417.
- [36] Sajewski Ł., Positive realization of fractional discrete-time linear systems with delays, Pomiary Automatyka Robotyka, 2, CD-ROM, (2012).
- [37] Kaczorek T., A modified state variables diagram method for determination of positive realizations of linear continuoustime systems with delays. Int. J. Appl. Math. Comput. Sci., vol. 22, no. 4, (2012), 897-905.
- [38] Kaczorek T., Minimal-phase realizations for positive linear systems, Technika Transportu Szynowego, vol.12 (2015).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c71c2c46-c628-4e70-b06b-9aac680ae09e